

MK110-24.8D.4R

Digitales Ein-/Ausgangsmodul 12-Kanal

8 DI, 4 DO

Bedienungsanleitung

MK110-24.8D.4R_2019.08_0295_DE © Alle Rechte vorbehalten Technische Änderungen und Druckfehler vorbehalten

1

Inhaltsverzeichnis

1	Bes	chreibung	2		
	1.1	Funktion	2		
	1.2	Zählerfunktion	2		
	1.3	RS485-Netzwerk	2		
	1.4	Aufbau	3		
2	Tec	hnische Daten	4		
	2.1	Umgebungsbedingungen	4		
3	Sich	nerheit	5		
	3.1	Bestimmungsgemäße Verwendung	5		
4	Mor	ntage und Anschluss	6		
	4.1	Elektrischer Anschluss	6		
	4.1.	1 Hardware-Schreibschutz	6		
	4.1.2	2 Eingänge	7		
	4.1.3	3 Ausgänge	7		
5	Kon	figuration	10		
6	Beti	rieb	12		
	6.1	Funktionstest	12		
	6.2	Eingangs-/Zählerzustände	12		
	6.3	Einzelsteuerung Ein/Aus	12		
	6.4	Einzelsteuerung mit PWM	13		
	6.5	Gruppensteuerung	13		
	6.6	Fehlerzustand	13		
	6.7	Speicheradressierung	14		
7	Log	ische Verknüpfungen	16		
	7.1	Parameter Logik	16		
	7.2	Parameter Verzögerungstyp	16		
	7.3	Parameter Verzögerung	17		
	7.4	Zeitdiagramme und Zuordnungen	17		
8	Wie	derherstellung der Werkseinstellungen	20		
9	War	tung	22		
10) Trar	nsport und Lagerung	23		
11	1 Lieferumfang24				
Aı	nhang	A Maßbilder	25		

1 Beschreibung

1.1 Funktion

Das digitale Ein-/Ausgangsmodul MK110-24.8D.4R ist ein Erweiterungsmodul mit 8 Digitaleingängen und 4 Digitalausgängen.

Das Modul ermöglicht folgende Funktionen:

- Anschluss von Peripheriegeräten mit digitalen Ein- und Ausgängen
- Auswertung von Eingangssignalen
- Impulszähler (siehe 1.2)
- Steuerung der digitalen Ausgänge über Modbus-Netzwerk oder mit interner Logik
- Pulsweitenmodulation (siehe 6.4)
- Netzwerkdiagnostik
- Fehler- oder Alarmsignale
- Slave im Sinne des Modbus-Protokolls

Das Modul unterstützt die Protokolle Modbus-RTU und Modbus-ASCII und verfügt über eine automatische Protokollerkennung.

Die Konfiguration des Moduls erfolgt mit dem mitgelieferten Konfigurationsprogramm "M110 Configurator" über den RS485-USB-Schnittstellenadapter IC4 (im Lieferumfang nicht enthalten). Die neueste Version der Konfigurationssoftware ist auf der Seite www.akytec.de zum Download verfügbar.

1.2 Zählerfunktion

Das Modul verfügt zusätzlich über die Möglichkeit, alle Eingänge als schnelle 16 Bit Zähler mit einer Zählfrequenz von bis zu 1 kHz zu verwenden. Die minimale Impulsdauer ist auf 0,5 ms begrenzt. Impulse mit höherer Frequenz oder mit geringerer Impulsdauer werden ignoriert. Der Zähler reagiert auf eine steigende Impulsflanke.

Beim Ausschalten bleibt der Zählerstand im Dauerspeicher erhalten.

Beim Überlauf wird der Zähler auf 0 gesetzt und die Zählung läuft weiter.

Für jeden Eingang kann die Entprell-Funktion eingeschaltet werden. Dafür muss während der Konfiguration der Parameter **tin.c** (debouncing filter) auf ON eingestellt werden (siehe Tabelle 5.1). Die Funktion ist empfehlenswert bei Signalfrequenzen bis zu 90 Hz und einem Tastgrad 0,5 und größer.

1.3 RS485-Netzwerk

Die I/O-Module der Serie Mx110 benutzen für den Datenaustausch den weitverbreiteten Standard RS485. Die serielle Schnittstelle RS485 ist in 2-Drahttechnik im Halbduplex-Verfahren ausgelegt. Die Module unterstützen die Protokolle Modbus RTU, Modbus ASCII und akYtec. Ein Netz besteht aus einem Master und kann bis zu 32 Slaves haben. Die maximale Länge beträgt 1200 m. Mit einem RS485-Schnittstellenverstärker können die Anzahl der Slaves und die Netzlänge vergrößert werden.

Die einzelnen Geräte sind in Linien- bzw. Bustopologien angeordnet. Das bedeutet, dass die Leitung vom ersten Gerät auf das Zweite, vom Zweiten auf das Dritte, etc., geführt wird. Eine sternförmige Verteilung und Stichleitungen sind nicht erlaubt.

An den offenen Kabelenden (erster und letzter Teilnehmer in einem Bussystem) entstehen immer Leitungsreflexionen. Diese sind umso stärker, je größer die gewählte Baudrate ist. Um die Reflexionen möglichst gering zu halten, wird ein Abschlusswiderstand eingebaut. In der Praxis haben sich für die Abschlusswiderstände 150 Ohm als sinnvoll erwiesen.

Alle Module werden ausschließlich im Slave-Modus betrieben. Als Master können SPSs, PCs mit SCADA-Software oder Bedienterminals eingesetzt werden.

Beschreibung

1.4 Aufbau

Kunststoff, grau, für Wand- oder Hutschienenmontage Gehäuse:

Spannungsversorgung

- Klemmleisten:
- LED "POWER"
- LED "RS-485"
- blinkt beim Datenaustausch am seriellen Port LED "FAULT" leuchtet, wenn der Datenaustausch am seriellen Port un-

2 abnehmbare Klemmleisten mit 24 Schraubklemmen

- terbrochen ist
- 8 LEDs "INPUTS" 4 LEDs "OUTPUTS"
- leuchten bei einer logischen "1" am jeweiligen Eingang leuchten bei einer logischen "1" am jeweiligen Ausgang

Abb. 1.1 Frontansicht

Die Maßbilder sind im Anhang A dargestellt.

Unter der Abdeckung auf der Vorderseite des Moduls befinden sich drei Jumper (siehe Abb. 4.1):

- Х2 Wiederherstellen der Werkseinstellungen (siehe 8)
- Servicefunktion Х3
- X1 Hardware-Schreibschutz des Dauerspeichers _

Alle 3 Jumper sind im Lieferzustand nicht eingesetzt.

2 Technische Daten

Spannungsversorgun	g	24 (2028) V DC
Leistungsaufnahme, r	nax.	6 W
Eingänge	Digital	8
	Analog	_
Ausgänge	Digital	4
	Analog	-
	Belastbarkeit	4 A bei 250 VAC cos¢ >0,4 oder 24 VDC
Schnittstelle RS485	Anschluss	D+, D-
	Protokolle	Modbus RTU/ASCII, akYtec
	Baudrate	2,4115,2 kbit/s
	Datenbits	7, 8
	Paritätskontrolle	gerade, ungerade, keine
	Stoppbits	1, 2
Abmessungen		63 x 110 x 75 mm
Gewicht		ca. 260 g
Gehäusematerial		Kunststoff

Tabelle 2.1 Technische Daten allgemein

Tabelle 2.2 Technische Daten der Eingänge

Eingangssignal	Schaltkontakt, NPN
Galvanische Trennung	_
Isolationsfestigkeit	1500 V
Impulsfrequenz, max.	1 kHz
Impulslänge, min	0,5 ms
Strom, max.	7 mA
Leitungswiderstand, max.	100 Ohm

2.1 Umgebungsbedingungen

Das Modul ist für die selbstständige Konvektionskühlung ausgelegt. Dies ist bei der Auswahl des Installationsortes zu beachten.

Die folgenden Umgebungsbedingungen müssen beachtet werden:

- saubere, trockene und kontrollierte Umgebung, staubarm
- geschlossene explosionsgeschützte Räume ohne aggressive Dämpfe und Gase

Tabelle 2.3	Umgebi	ungsbe	edingun	gen
-------------	--------	--------	---------	-----

Umgebungsbedingungen	Zulässiger Bereich
Umgebungstemperatur	-20+55 °C
Transport und Lagerung	-25+55°C
Relative Luftfeuchtigkeit	bis 80% r.F. (bei +25°C, nicht kondensierend)
Schutzart	IP20
Höhenlage	2000 m über NN

Sicherheit

3 Sicherheit

In dieser Betriebsanleitung werden folgende Warnhinweise verwendet:

Das Schlüsselwort GEFAHR wird bei Warnung vor einer unmittelbaren drohenden Gefahr verwendet. Die möglichen Folgen können Tod oder schwere Verletzungen sein.

WARNUNG Das Schlüsselwort WARNUNG wird bei Warnung vor einer möglichen Gefahr verwendet. Die möglichen Folgen können Tod oder schwere Verletzungen sein.

Das Schlüsselwort HINWEIS wird bei einer Warnung vor einem Sachschaden verwendet. Die möglichen Folgen einer Nichtbeachtung können Sachschäden, z. B. an

Das Schlüsselwort ACHTUNG wird bei Warnung vor einer möglichen gefährlichen

Situation verwendet. Die möglichen Folgen können leichte Verletzungen sein.

3.1 Bestimmungsgemäße Verwendung

der Maschine oder am Material sein.

Das Gerät ist nur für die in dieser Bedienungsanleitung beschriebenen Einsatzbereiche vorgesehen, unter Beachtung aller angegebenen technischen Daten.

Nicht bestimmungsgemäße Verwendung

Jede andere Verwendung gilt als nicht bestimmungsgemäß. Besonders zu beachten ist hierbei:

- Das Gerät darf nicht eingesetzt werden f
 ür medizinische Ger
 äte, die menschliches Leben oder k
 örperliche Gesundheit erhalten, kontrollieren oder sonst wie beeinflussen.
- Das Gerät darf nicht in explosionsfähiger Umgebung eingesetzt werden.
- Das Gerät darf nicht eingesetzt werden in einer Atmosphäre, in der ein chemisch aktiver Stoff vorhanden ist.

4 Montage und Anschluss

Montage, Einbau und Anschluss

Die Folgen einer nicht fachgerecht ausgeführten Montage, Einbau und Anschluss könnten schwere oder leichte Verletzungen sowie Schäden am Gerät sein. Montage, Einbau und Anschluss darf nur durch Fachkräfte oder durch eine beauftragte Fachkraft durchgeführt werden!

- Das Modul ist f
 ür die Montage in einem Schrank auf Hutschiene oder an einer Wand vorgesehen.
- Montieren Sie das Modul in einem Gehäuse, in dem saubere, trockene und kontrollierte Umgebungsbedingungen gewährleistet sind. Weitere Anforderungen entnehmen Sie bitte 2.1.
- Das Modul ist f
 ür die selbstst
 ändige Konvektionsk
 ühlung ausgelegt. Dies ist bei der Auswahl des Installationsortes zu beachten.
- 4.1 Elektrischer Anschluss

Elektrische Spannung Elektrische Körperströme könnten Sie töten oder schwer verletzen. Der Anschluss muss durch eine Elektrofachkraft erfolgen. Die Netzspannung muss mit der auf dem Typenschild angegebenen Bemessungsspannung übereinstimmen! Netzseitig muss eine entsprechende elektrische Absicherung vorhanden sein! Schalten Sie die Versorgungsspannung nur nach der vollständigen Verdrahtung HINWEIS des Geräts ein. Die elektrischen Anschlüsse sind auf der Abb. 4.1 und die Klemmenbelegungen in der Tabelle 4.1 dargestellt. Die Anschlussvarianten für verschiedene Signaltypen und die Beschaltung der Ausgangsrelais sind in den Abbildungen 4.2 - 4.4 dargestellt. Schließen Sie die Versorgungsspannung an die Klemmen "24 V" und "0 V" an. _ Anschlussquerschnitt ≤1,5 mm² EMV-Sicherheit Signal- und Datenleitungen dürfen nicht zusammen mit Stromleitungen verlegt werden. HINWEIS Für die Datenleitungen darf ausschließlich ein geschirmtes Kabel verwendet werden. Schirmauflage beidseitig ist aus EMV-Gründen dringend empfohlen! Für die Signalleitungen darf ausschließlich ein geschirmtes Kabel verwendet werden. Schirmauflage im Schaltschrank ist aus EMV-Gründen dringend empfohlen! Schließen Sie die RS485-Leitung an die Klemmen D+ und D- an. Der Anschluss an die Schnittstelle RS485 erfolgt über TwistedPair-Kabel. Die Verbindungsleitung darf 1200 m nicht überschreiten. 4.1.1 Hardware-Schreibschutz Bei starken elektromagnetischen Störungen oder ähnlichen Bedingungen kann es zum Verlust der Daten im Dauerspeicher kommen. Der Jumper X1 (Hardware-Schreibschutz) ermöglicht es einen Datenverlust zu vermeiden. Folgende Schritte sind notwendig: die Spannungsversorgung abschalten die Abdeckung auf der Vorderseite des Moduls öffnen (siehe Abb. 4.1)

- den Jumper X1 in der Position "geschlossen" einsetzen

Montage und Anschluss

Folgendes ist dabei zu beachten:

- um die Konfigurationsparameter zu ändern, muss der Jumper X1 wieder entfernt werden
- solange der Jumper X1 eingesetzt ist, werden die Eingangszähler bei abgeschalteter Spannungsversorgung zurückgesetzt.

4.1.2 Eingänge

Am Eingang können angeschlossen werden:

- Potentialfreie Kontakte
- NPN-Transistorausgänge mit offenem Kollektor

Beim Anschließen ist Folgendes zu beachten:

- Alle COM-Klemmen sind intern miteinander verbunden.
- Der gemeinsame Widerstand des Sensorausgangs mit den Verbindungsleitungen darf 100 Ohm nicht übersteigen.

4.1.3 Ausgänge

Das Modul ist mit 4 Relaisausgängen bestückt.

- DO1, DO3 Wechsler-Kontakt
- DO2, DO4 Schließer-Kontakt
- Jeder Ausgang kann in Pulsweitenmodulation-Modus (PWM) betrieben werden (siehe 6.4).
- Die Ausgänge können via RS485-Netzwerk gesteuert (siehe 6.3 6.5) oder mit den Eingängen logisch verknüpft werden (siehe 7)

Abb. 4.1 Elektrische Anschlüsse

Montage und Anschluss

Tabelle 4.1 Klemmenbelegung

Nr.	Bezeichnung	Beschreibung	Nr.	Bezeichnung	Beschreibung
1	0 V	Versorgung	13	D-	RS485 D-
2	24 V	Versorgung	14	D+	RS485 D+
3	DI1	DI1	15	DO1A	DO1 NO
4	СОМ	Gemeinsame Minusklemme	16	DO1B	DO1 CO
5	DI2	DI2	17	DO1C	DO1 NC
6	DI3	DI3	18	DO2A	
7	DI4	DI4	19	DO2B	DO2 NO
8	DI5	DI5	20	DO3A	DO3 NO
9	DI6	DI6	21	DO3B	DO3 CO
10	DI7	DI7	22	DO3C	DO3 NC
11	СОМ	Gemeinsame Minusklemme	23	DO4A	DO4 NO
12	DI8	DI8	24	DO4B	

Abb. 4.2 Anschluss der Sensoren mit potentialfreien Kontakten an die Eingänge

Abb. 4.3 Anschluss der 3-Draht Sensoren mit NPN-Transistorausgängen an die Eingänge

Abb. 4.4 Ausgangsrelais

Konfiguration

Vor dem Start

5 Konfiguration

Vor dem Einschalten ist sicher zu stellen, dass das Gerät für min. 30 Minuten bei der vorgesehenen Betriebstemperatur (-20...+55 °C) gelagert wurde.

Das Ablesen, Ändern und Speichern der Parameter ist nur mit dem Konfigurationsprogramm "M110 Configurator" möglich. Die komplette Parameterliste ist in der Tabelle 5.1 ersichtlich.

Damit das Modul in einem RS485-Netzwerk betrieben werden kann, muss es konfiguriert werden. Folgende Schritte sind notwendig:

- Installieren Sie das Konfigurationsprogramm "M110 Configurator" auf den PC
- Das Modul muss an den USB-Port des PCs über den RS485-USB-Schnittstellenadapter IC4 (im Lieferumfang nicht enthalten) angeschlossen werden.
 Verbinden Sie die Klemme D+/D- des Moduls mit den Klemmen D+/D- des Adapters.
- Schließen Sie die Versorgungsspannung an die Klemme 24V/0V des Moduls
- Schalten Sie die Versorgungsspannung ein
- Starten Sie den M110 Configurator

Wenn die Werkseinstellungen des Moduls nicht geändert wurden, wird die Verbindung mit dem Modul automatisch hergestellt. Das Modul wird automatisch erkannt, die Konfigurationsparameter des Moduls ausgelesen und das Fenster mit der entsprechenden Konfigurationsmaske geöffnet.

Andernfalls müssen die Netzwerkparameter des Konfigurationsprogramms angepasst werden.

Bezeich-	Parameter	Zulässiger Wert	Bedeutung	Werksein-		
Allgemeine Parameter						
dev	Device	Bis zu 8 Zeicł	nen	MK110- 8D4R		
ver	Firmware version	Bis zu 8 Zeich	nen	Hersteller- Angaben		
	Netzwo	erkparameter				
		0	2,4			
	Baudrate, kbit/s	1	4,8			
		2	9,6			
		3	14,4			
bPS		4	19,2	9,6		
		5	28,8			
		6	38,4			
		7	57,6			
		8	115,2			
l En	Data hite *	0	7	o		
	Data bits "	1	8	0		
		0	none			
PrtY	Parity *	1	even	none		
		2	odd			
Shit	Stop bits *	0	1	1		
SDIL	Stop bits *	1	2			

Tabelle 5.1 Konfigurationsparameter

Konfiguration

Bezeich- nung	Parameter	Zulässiger Wert	Bedeutung	Werksein- stellung		
A.Len	Address bits	0	8	8		
Addr	Device address	1.	247	16		
t.out	Time-out, s	0.	600	0		
Rs.dL	Response delay, ms	0	45	2		
	Eingar	ngsparameter				
Tin C	Debouncing filter	0	aus	0		
	Debounding liner	1	ein	0		
	Ausgangsparameter					
THPD	PWM period, s	1900	1900	1		
O.ALr	Safe output status, %	0100	0100	0		
		0	RS485			
	Output logic	1	direct logic	0		
		2	NOT			
		3	AND			
LUg		4	OR			
		5	one impuls			
		6	PWM			
		7	trigger			
		0	no delay			
O.dl	On/Off-delay	1	on-delay	0		
		2	off-delay			
Tim	Output_delay,_x0.1s	065535	x 0,1 s	0		

* Unerlaubte Kombinationen der Parameter:

- prty=0; sbit=0; len=0
- prty=1; sbit=1; len=1
- prty=2; sbit=1; len=1

6 Betrieb

Im Betrieb wird das Modul von einem Master-Gerät in einem Modbus-Netzwerk gesteuert.

Weiterhin können die Eingangs- und Zählerzustände ausgelesen und die Zählerzustände auf 0 gesetzt werden (siehe 6.2).

Außerdem können die Ausgänge gesteuert werden. Hierfür gibt es drei Möglichkeiten:

- Einzelsteuerung Ein/Aus (siehe 6.3)
- Einzelsteuerung mit Pulsweitenmodulation (siehe 6.4)
- Gruppensteuerung (siehe 6.5)

Es stehen zum Lesen die Modbus-Funktionen 03, 04 und zum Schreiben die Modbus-Funktionen 15 und 16 zur Verfügung.

6.1 Funktionstest

Um das Modul MK110-24.8D.4R auf Funktionalität zu prüfen sind folgende Schritte notwendig:

- Das Modul an den USB-Port des PCs über den Adapter USB/ RS485 anschließen.
- Das Konfigurationsprogramm "M110 Configurator" starten.
- Wird die Verbindung mit dem Modul nicht automatisch hergestellt, müssen die Netzwerkparameter des Konfigurationsprogramms angepasst werden.
- Im Menü "Device -> I/O status…" wählen. Das Fenster "Output status" wird geöffnet.
- Bei jedem einzelnen Ausgang kann der PWM-Tastgrad (das Verhältnis der Impulsdauer zur Periodendauer) auf 0 oder 1 eingestellt werden. Der Ausgang wird entsprechend ein- oder ausgeschaltet.
- Es kann zusätzlich der Ausgangswiderstand mit einem Widerstandsmessgerät gemessen werden.
- Im geschlossenen Zustand darf er max. 1 Ohm betragen
- Im geöffneten Zustand muss er min. 2 MOhm betragen
- Bei eventuell auftretenden Unstimmigkeiten bitte an den technischen Support der Firma akYtec GmbH wenden.

6.2 Eingangs-/Zählerzustände

Die Eingangszustände können als eine Bitmaske ausgelesen werden. Die entsprechenden Modbus-Register können aus der Tabelle 6.2 entnommen werden. Das niedrigstwetige Bit der Maske entspricht dem Eingang 1.

Um einen Zähler zurückzusetzen muss in dem entsprechenden Register ein 0 geschrieben werden.

6.3 Einzelsteuerung Ein/Aus

Mit der Modbus-Funktion 15 (0x0F) "Write Multiple Coils" kann eine bestimmte Anzahl der Ausgänge gesteuert werden. Im Befehl muss Folgendes enthalten sein:

- Startadresse (0x0000 bis 0x0003)
- Anzahl der zu beschreibenden Bits (0x0001 bis 0x0004)
- Anzahl der Bytes n (0x01)
- Information (Bitmaske, n Bytes)

Die Adressierung den einzelnen Zellen ist in der Tabelle 6.3 dargestellt.

6.4 Einzelsteuerung mit PWM

Durch eine Pulsweitenmodulation (PWM) soll der Mittelwert einer Spannung verändert werden. Es werden fortlaufend Impulse mit festgelegter Periodendauer (**THPD**) und Tastgrad (das Verhältnis der Impulsdauer zur Periodendauer) über einen Ausgang ausgegeben.

Die Ausgangszustände entsprechend dem eingegebenen Tastgrad sind in der Tabelle 6.1 dargestellt. Zum Schreiben wird die Funktion 16 benutzt.

Tabelle 6.1 Pulsweitenmodulation

Tas	stgrad	Ausgangezustand	
Konfiguration	Modbus-Befehl	Ausgangszüstanu	
0	0	offen	
1	1000	geschlossen	
zwischop 0 und 1	zwischop 0 upd 1000	Impulse mit einem	
		Tastgrad zwischen 0 und 100%	

Der Parameter **THPD** wird in der Regel während der Konfiguration eingestellt und im Dauerspeicher gespeichert. Es ist möglich die Periodendauer auch mit einem Modbus-Befehl zu ändern, dabei muss Folgendes berücksichtigt werden:

Parameter Tastgrad

Das Konfigurationsprogramm benutzt kein Modbus-Protokoll, sondern ein internes Kommunikationsprotokoll. Aus diesem Grund können sich die Wertebereiche einiger Parameter bei der Konfiguration und im Modbus-Befehl voneinander unterscheiden. Um z. B. den Ausgang DO1 im Funktionstest einzuschalten, muss der Tastgrad = 1 eingegeben werden, im Modbus-Befehl dagegen muss im Register 0000 der Wert 1000 geschrieben werden.

Dauerspeicher

HINWEIS

Da der Dauerspeicher nicht unbegrenzt wiederbeschreibbar ist (~1 Mio), ist es nicht empfohlen die Periodendauer (THPD) und den Safe output status (O.ALr) so oft durch die Modbus-Befehle zu ändern, wie z.B. den PWM-Tastgrad.

Die minimale PWM-Periode ist 50 ms und kann nicht geändert werden.

6.5 Gruppensteuerung

Die Gruppensteuerung erfolgt mit der Modbus-Funktion 16. In dem Fall muss die Ausgangszustand-Bitmaske (siehe Tab. 6.2) in dem Register 50 (0x0032) geschrieben werden. Damit werden alle Ausgangszustände gleichzeitig gesteuert. Das niedrigstwertige Bit der Bitmaske entspricht dem Ausgang 0.

Mit der Übertragung der Maske wird die Generierung des Impulses gestoppt und die Ausgänge werden entsprechend der in der Maske definierten Zustände gesetzt.

6.6 Fehlerzustand

Wenn der Datenaustausch am seriellen Port unterbrochen ist, d. h. es kommt kein Befehl vom Master innerhalb der im Parameter **t.out** festgelegten Zeit, werden alle Ausgänge mit dem Parameter **Log=**0 in den sicheren Zustand gesetzt. Der sichere Zustand ist der vom Anwender festgelegte sichere PWM-Tastgrad und wird im Parameter **O.ALr** (Safe output status) für den jeweiligen Ausgang eingestellt. In diesem Zustand gilt Folgendes:

- LED "FAULT" leuchtet.
- Sobald vom Master eine Anfrage kommt, wird die Anzeige gelöscht.

- Die Ausgänge bleiben im sicheren Zustand, solange kein Befehl der Zustandsänderung vom Master kommt.
- Wenn der Parameter t.out auf 0 eingestellt ist, wird kein Fehlerzustand eintreten.

Die Parameter **t.out** und **O.ALr** können während der Konfiguration oder im Betrieb eingestellt und im Dauerspeicher gespeichert werden. Dabei muss der Hinweis "Dauerspeicher" aus dem Punkt 6.4 berücksichtigt werden.

6.7 Speicheradressierung

Alle Variablen und Parameter aus der Tabelle 6.2 sind vom Typ **uint16**. Die Variablen aus der Tabelle 6.3 sind vom Typ **bool**

R – Lesezugriff

W - Schreibzugriff

Tabelle 6.2 Modbus-Register

		Wert			Adresse	
Parameter	Einheit	Konfigu-	Modbus-	Zugriff	hex	dec
		ration	Betehl		_	
Tastgrad DO1	-	01	01000	RW	0000	0000
Tastgrad DO2	-	01	01000	RW	0001	0001
Tastgrad DO3	-	01	01000	RW	0002	0002
Tastgrad DO4	-	01	01000	RW	0003	0003
Safe output status (O.ALr) DO1	-	0100	01000	RW	0010	0016
Safe output status (O.ALr) DO2	-	0100	01000	RW	0011	0017
Safe output status (O.ALr) DO3	-	0100	01000	RW	0012	0018
Safe output status (O.ALr) DO4	-	0100	01000	RW	0013	0019
Periodendauer (THPD) DO1	S	1900	1900	RW	0020	0032
Periodendauer (THPD) DO2	S	1900	1900	RW	0021	0033
Periodendauer (THPD) DO3	S	1900	1900	RW	0022	0034
Periodendauer (THPD) DO4	S	1900	1900	RW	0023	0035
Time-out (t.out)	S	0600	0600	RW	0030	0048
Ausgangszustand-Bitmaske	-	-	015	RW	0032	0050
Eingangszustand-Bitmaske	-	-	0255	R	0033	0051
Zähler DI1	-	065535	065535	RW	0040	0064
Zähler DI2	-	065535	065535	RW	0041	0065
Zähler DI	-	065535	065535	RW		
Zähler DI8	-	065535	065535	RW	0047	0071
Logik DOI1 (Log)	-	07	07	RW	0050	0080
Logik DO2 (Log)	-	07	07	RW	0051	0081
Logik DO3 (Log)	-	07	07	RW	0052	0082
Logik DO4 (Log)	-	07	07	RW	0053	0083
Verzögerungstyp DO1 (O.dl)	-	02	02	RW	0060	0096
Verzögerungstyp DO2 (O.dl)	-	02	02	RW	0061	0097
Verzögerungstyp DO3 (O.dl)	-	02	02	RW	0062	0098
Verzögerungstyp DO4 (O.dl)	-	02	02	RW	0063	0099
Verzögerung DO1 (Tim)	0,1 s	065535	065535	RW	0070	0112
Verzögerung DO2 (Tim)	0,1 s	065535	065535	RW	0071	0113
Verzögerung DO3 (Tim)	0,1 s	065535	065535	RW	0072	0114
Verzögerung DO4 (Tim)	0,1 s	065535	065535	RW	0073	0115

Tabelle 6.3 Ausgangszustand-Bitadressen für die Modbus-Funktion 15

Ausaana	Zugriff	Zellena	dresse
Ausyany	Zugim	hex	dec
DO1	W	0000	0000
DO2	W	0001	0001
DO3	W	0002	0002
DO4	W	0003	0003

7 Logische Verknüpfungen

Sobald für einen Ausgang der Parameter Logik (**Log**) nicht gleich 0 ist, wird dieser nicht mehr von einem Master-Gerät gesteuert. Der Ausgangszustand ist von den Parametern Logik (**Log**), Verzögerungstyp (**O.dl**) und Verzögerung (**Tim**) abhängig. Die Parameter werden während der Konfiguration festgelegt (siehe 5). Die Zeitdiagramme und I/O-Zuordnungen entnehmen Sie bitte der Tabellen 7.4, 7.5.Die Lesefunktionen können weiter benutzt werden.

7.1 Parameter Logik

Im Parameter Logik (**Log**) eines Ausgangs werden die logische Verknüpfungen zwischen Eingängen und dem Ausgang festgelegt.

Wert	Bedeutung	Beschreibung
0	RS485	Ausgang wird von einem Master gesteuert
1	direct logic	Direkte Verknüpfung zwischen dem Ausgang und einem Ein- gang
2	NOT	Invertierte Verknüpfung zwischen dem Ausgang und einem Eingang
3	AND	Zwei Eingänge sind durch logisches UND mit dem Ausgang verknüpft
4	OR	Zwei Eingänge sind durch logisches ODER mit dem Ausgang verknüpft
5	one impuls	Bei einer steigenden Flanke an einem Eingang wird am Aus- gang ein Impuls mit der im Parameter Tim festgelegte Länge ausgegeben
6	PWM	Bei einem eingeschalteten Eingang werden am Ausgang fort- laufend Impulse mit der Periodendauer THPD und Impulslänge Tim ausgegeben
7	trigger	Wenn DIa=1 und DIb=0, dann DO=1 Wenn DIb=1, dann DO=0

Tabelle 7.1 Parameter Log

Solange der Parameter Time-out (**t.out**) > 0 und der Fehlerzustand (siehe 6.6) eingetreten ist, werden die Ausgänge mit **Log** >0 nicht auf den "Safe output status" (**O.ALr**) gesetzt. Der Ausgangszustand wird weiter von der festgelegten Logik bestimmt.

7.2 Parameter Verzögerungstyp

Der Parameter Verzögerungstyp (**O.dl**) bestimmt, ob die Verzögerung stattfindet und der Typ der Verzögerung.

Tabelle 7.2	Parameter	O.dl

Wert	Bedeutung	Beschreibung
0	no delay	Keine Verzögerung
1	on-delay	Einschaltverzögerung
2	off-delay	Ausschaltverzögerung

7.3 Parameter Verzögerung

Der Parameter Verzögerung (**Tim**) bestimmt die Verzögerung am Ausgang oder die Impulslänge, abhängig von der Logik (**Log**) und dem Verzögerungstyp (**O.dl**). Die Verzögerung kann im Bereich von 0 bis 6553,5 s mit der Schrittweite 0,1 s eingegeben werden.

Tabelle 7.3 Auswirkung der Verzög	gerung
-----------------------------------	--------

Log	O.dl=0	O.dl=1	O.dl=2
0	-	-	-
1	-	Einschaltverzögerung	Ausschaltverzögerung
2	-	Einschaltverzögerung	Ausschaltverzögerung
3	-	Einschaltverzögerung	Ausschaltverzögerung
4	-	Einschaltverzögerung	Ausschaltverzögerung
5	-	Impulslänge	Impulslänge
6	-	Impulslänge	Impulslänge
7	-	-	-

7.4 Zeitdiagramme und Zuordnungen

I	Log	O.dl		
Wert	Bedeu- tung	0 (no delay)	1 (on-delay)	2 (off-delay)
1	direct logic	.1" DI1 .0"	,1' Di1,0' ,0' DO1 ,0'	.1' D1 ,0' ,0'
2	NOT	,1* Di1 ,0*,1*,1*,1*,0*_,0*	.1" D11 .0" .1" Tim D01 .0"	,1' DI1 ,0' ,1' D01 ,0'
3	AND	1' DI1 .0' .1' DI2 .0' .1' DO1 .0'	D11 .0° .1° D2 .0° .1° .1° .1° .1° .1° .1° .0° .1° .0°	,1' DI1 ,0' ,0' ,1' DO1 ,0' ,1' DO1 ,0'
4	OR	,1' DI1 ,0' ,1' DI2 ,0' ,1' DO1 ,0'	D1 .0*	,1' DI1 ,0' ,1' DI2 ,0' ,1' DO1 ,0'
5	one impuls	,1° ,0° ,1° Dot ,0°	nicht verwendet	nicht verwendet
6	PWM	,1' D1 ,0'ThmTHPD ↓ 1' 0'	nicht verwendet	nicht verwendet

Tabelle 7.4 Zeitdiagramme

Log		O.dl		
Wert	Bedeu- tung	0 (no delay)	1 (on-delay)	2 (off-delay)
7	trigger	Wenn Dla=1 und Dlb=0, dann DO=1 Wenn Dlb=1, dann DO=0	nicht verwendet	nicht verwendet

Tabelle 7.5 I/O-Zuordnung

Log		Zuordnung
Wert	Bedeutung	
1	direct logic	DI1 DEAY DO1 DI2 DI3 DEAY DO2 DI4 DI5 DEAY DO3 DI6 DEAY DO3 DI6 DEAY DO3 DI6 DEAY DO3
2	NOT	$D11 \longrightarrow NOT \rightarrow DELAY \longrightarrow DO1$ $D12 \longrightarrow D13 \longrightarrow NOT \rightarrow DELAY \longrightarrow DO2$ $D14 \longrightarrow D15 \longrightarrow NOT \rightarrow DELAY \longrightarrow DO3$ $D16 \longrightarrow D17 \longrightarrow NOT \rightarrow DELAY \longrightarrow D04$ $D18 \longrightarrow D04$
3	AND	DI1 DI2 AND DELAY DI3 DI3 DI3 DI3 DI3 DI3 DI3 DI3
4	OR	Di1 $ OR$ $DELAY$ $-$ Do1 Di2 $ OR$ $DELAY$ $-$ Do2 Di4 $ OR$ $DELAY$ $-$ Do2 Di5 $ OR$ $DELAY$ $-$ Do3 Di6 $ OR$ $DELAY$ $-$ DO3 Di6 $ OR$ $DELAY$ $-$ DO3

Log		Zuordnung
Wert	Bedeutung	
5	one impuls	DI1 DO1 DI2 DO1 DI3 DO2 DI4 DO3 DI5 DO3 DI6 DO3 DI6 DO4 DI7 DO4
6	PWM	DI1
7	trigger	DI1 TRIGGER DO1 DI2 DI3 TRIGGER DO2 DI4 DI5 TRIGGER DO3 DI6 TRIGGER DO3 DI6 TRIGGER DO4 DI7 TRIGGER DO4

8 Wiederherstellung der Werkseinstellungen

Wenn die Kommunikation zwischen einem PC und dem Modul nicht funktioniert und die Netzwerkparameter des Moduls nicht bekannt sind, müssen die Werkseinstellungen für die Netzwerkparameter wiederhergestellt werden. Folgende Schritte sind notwendig:

- Spannungsversorgung des Moduls abschalten
- Abdeckung auf der Vorderseite des Moduls abnehmen
- Jumper X2 einsetzen. Das Modul wird mit den werkseingestellten Netzwerkparametern betrieben, die Benutzereinstellungen bleiben gespeichert.
- Spannungsversorgung wieder einschalten

Elektrische Spannung

Elektrische Körperströme könnten Sie töten oder schwer verletzen. Die Spannung auf einigen Bauteilen der Leiterplatte kann gefährlich sein! Eine direkte Berührung und Eindringen eines fremden Körpers in das Gehäuse sind zu vermeiden!

- Konfigurationsprogramm "M110 Configurator" starten
- Im Fenster "Connect Device" die Werte aus der Tabelle 8.1 eintragen oder die Schaltfläche "Use factory settings" betätigen (Siehe Abb. 8.1)

Connection to device		— ×
	Serial port settings	Value
M110	Baudrate	9600
	Data bits	8
CONFIGURATOR	Parity	None
	Stop bits	1
	Address bits	8
	Address	16
	Serial port	COM9
	Connect Scan network Use factory settings	Work offline Exit

Abb. 8.1 Startfenster der Konfigurationsprogramm

- Schaltfläche "Connect" betätigen. Die Verbindung wird mit den werkseitigen Netzwerkparametern hergestellt
- Das Hauptfenster des Konfigurators ist geöffnet. Jetzt können die gespeicherten Parameter des Moduls abgelesen werden (Siehe Abb. 8.2).
- Im Hauptfenster des M110 Configurator den Ordner "Network parameters" öffnen und die Werte der Netzwerkparameter notieren

Wiederherstellung der Werkseinstellungen

) 🖻 😻 🥱 🎭 🧞 🥱	🎭 🍠		🖻 💐 😵			
scription	Parameter	· •	Value	Attribute	User	Error
🚵 Configuration(no name))						
🖃 🛅 Device parameters						
🖨 🗀 Common parameters						
Device	dev		MV110-8A			
Version	ver		2.07			
Exit code	exit		Power up			
🖃 🐙 Network parameters						
Baudrate	bPS		9600	read/write	unknown	
Data bits	LEn		8	read/write	unknown	
Parity	PrtY		None	read/write	unknown	
Stop bits	Sbit		1	read/write	unknown	
Address bits	A.Len		8	read/write	unknown	
ABC Device address	Addr		16	read/write	unknown	
ABC Response delay, ms	Rs.dL		2	read/write	unknown	
🗄 🗀 Input parameters						

Abb. 8.2 Hauptfenster des M110 Configurator

- M110 Configurator schließen
- Versorgungsspannung ausschalten
- Jumper X2 abnehmen
- Abdeckung aufsetzen
- Versorgungspannung einschalten
- M110 Configurator wieder starten
- Notierte Netzwerkparameter einstellen
- Schaltfläche "Connect" betätigen

Das Modul ist betriebsbereit.

Tabelle 8.1 Netzwerkparameter-Werkseinstellungen

Parameter	Bezeichnung	Werkseinstellung
Baud rate	bPS	9600
Data bits	LEn	8
Parity	PrtY	None
Stop bits	Sbit	1
Address bits	A.Len	8
Address	Addr	16
Response delay, ms	Rs.dL	2

Wartung

9 Wartung

Die technische Wartung des Geräts sollte min. alle 6 Monate durch das Wartungspersonal erfolgen und beinhaltet:

- Reinigung des Gehäuses und der Klemmleisten vom Staub, Schmutz und Fremdkörper
- Prüfung der Befestigung des Geräts
- Prüfung der Anschlüsse

Bei der Durchführung der Wartungsarbeiten sind die Sicherheitshinweise aus dem Abschnitt 3 "Sicherheit" zu beachten.

10 Transport und Lagerung

Packen das Gerät so, dass es für die Lagerung und den Transport sicher gegen Stöße geschützt wird. Die Originalverpackung bietet optimalen Schutz.

Wird das Gerät nicht unmittelbar nach der Anlieferung in Betrieb genommen, muss es sorgfältig an einer geschützten Stelle gelagert werden. Es darf kein chemisch aktiver Stoff in der Luft vorhanden sein.

Zulässige Lagertemperatur: -25...+55 °C

Transportschäden, Vollständigkeit

HINWEIS

Das Gerät könnte beim Transport beschädigt worden sein. Überprüfen Sie das Gerät auf Transportschäden und auf Vollständigkeit! Melden Sie festgestellte Transportschäden unverzüglich dem Spediteur und akYtec GmbH!

Lieferumfang

11 Lieferumfang

- Modul MK110-24.8D.4R
- Kurzanleitung

1 1

Anhang A Maßbilder

Abb. A.1 Außenmaße

Abb. A.2 Montagemaße

Abb. A.3 Tauschen der Klemmleisten