

MU210-502

Analog output module

User guide

MU210-502_3-EN-122423-1.9 © All rights reserved Subject to technical changes and misprints

1

Contents

1. Introduction	3
1.1. Terms and abbreviations	3
1.2. Symbols and key words	3
1.3. Intended use	3
1.4. Limitation of liability	3
1.5. Safety	3
2. Overview	5
2.1. Basic features	5
2.2. Design and indication	5
3. Specification	7
3.1. Specifications	7
3.2. Operating conditions	8
4. Configuration and operation	9
4.1. Connection with akYtecToolPro	9
4.1.1. Connection over USB	9
4.1.2. Connection over Ethernet	9
4.2. Real time clock	10
4.3. Battery	11
4.4. Ethernet	11
4.4.1. Network parameters setting using service button	11
4.5. Modbus Slave	12
4.6. Data logging	12
4.7. Analog outputs	13
4.7.1. Safe output status	13
4.7.2. Output diagnostics	13
4.8. NTP protocol	13
4.9. MQTT protocol	14
4.9.1. Basics	14
4.9.2. Implementation	14
4.10. SNMP protocol	16
4.10.1. Basics	16
4.10.2. Implementation	16
4.10.3. Password	16
5. Installation	17
5.1. Mounting	17
5.2. Wiring	17
5.2.1. General information	18
5.2.2. Analog outputs	19
6 Factory settings restoration	שו 19
7 Maintananca	∠ ເ າາ
8 Transportation and storage	22 22
9. Scope of delivery	ZJ
a. Scope of delivery	24 วศ
Appendix R. Colvania isolation	25
	26

Appendix C. Battery replacement	27
Appendix D. Modbus application	28

1 Introduction

1.1 Terms and abbreviations

akYtecToolPro - configuration software

DAC – digital-to-analog converter.

Modbus – application layer messaging protocol for client/server communication between devices connected on different types of buses or networks, originally published by Modicon (now Schneider Electric), currently supported by an independent organization Modbus-IDA (<u>www.modbus.org</u>) **NTP** – Network Time Protocol

MQTT – Message Queuing Telemetry Transport, publish-subscribe network protocol to transport messages between devices

SNMP – Simple Network Management Protocol, an Internet Standard protocol for collecting and organizing information about managed devices on IP networks and for modifying that information to change device behavior

RTC – real-time clock

UTC - Coordinated Universal Time, worldwide primary time standard

1.2 Symbols and key words

WARNING

WARNING indicates a potentially dangerous situation that could result in death or serious injuries.

CAUTION indicates a potentially dangerous situation that could result in minor injuries.

NOTICE

NOTICE indicates a potentially dangerous situation that could result in damage to property.

NOTE indicates helpful tips and recommendations, as well as information for efficient and trouble-free operation.

1.3 Intended use

The device has been designed and built solely for the intended use described here, and may only be used accordingly. The technical specifications contained in this document must be observed. The device may be operated only in properly installed condition.

Improper use

Any other use is considered improper. Especially to note:

- The device may not be used for medical applications.
- The device may not be used in explosive environment.
- The device may not be used in atmosphere in which there are chemically active substances.

1.4 Limitation of liability

Our company does not bear any responsibility with respect to breakdowns or damages caused by using the product in a manner other than described in the Manual or in violation of the current regulations and technical standards.

1.5 Safety

WARNING

Ensure the mains voltage matches the voltage marked on the nameplate. Ensure the device is provided with its own power supply line and electric fuse.

WARNING

The device terminals may be under a dangerous voltage. De-energize the device before working on it. Switch on the power supply only after completing all works on the device.

NOTICE (]

Supply voltage may not exceed 48 V. Higher voltage can damage the device. If the supply voltage is lower than 10 V DC, the device cannot operate properly but will not be damaged.

(\mathbf{I})

NOTICE If the device is brought from a cold to a warm environment, condensation may form inside the device. To avoid damage to the device, keep the device in the warm environment for at least 1 hour before powering on.

6

7

5

2 Overview

MU210-502 is an extension module with 6 analog outputs.

The module operates as a slave in Ethernet network with Modbus TCP protocol. The device is intended for use in industrial automation for creation of decentralized control systems. The module can be configured with the configuration software akYtecToolPro (free) over USB or Ethernet interface (Sect. 4). The software can be downloaded from our homepage <u>www.akYtec.de</u>.

2.1 Basic features

- 6 analog inputs (Sect. 4.8)
- Device and output status indicators (Sect. 2.2)
- Output malfunction detection (Sect. 4.8.2)
- Dual Ethernet (Sect. 4.4, 5.2.3)
- Slave in Modbus network over Ethernet (Sect. 4.5)
- USB configuration interface (Sect. 4.1.1)
- Real-time clock (Sect. 4.2)
- Device diagnostic (Sect. 4.6)
- Data logging and archiving (Sect. 4.7)
- Error indication (Table 2.1)
- DIN rail or wall mounting (Sect. 5.1)

2.2 Design and indication

The device is designed in a plastic case for DIN rail or wall mounting (Sect. 5.1). Plug-in terminal blocks enable quick and easy replacement of the device.

Fig. 2.1 Front view (closed cover)

Fig. 2.2 Front view (open cover)

On the device top:

- 1. Power supply terminals
- 2. 2 Ethernet connectors (Sect. 4.4, 5.2.4) On the front cover:
 - 3. LED indicators (Tab. 2.1)
 - 4. Recess for a sticker with IP address

Under the front cover:

- 5. Removable I/O terminal block (Sect. 5.2)
- 6. microUSB programming connector (Sect. 4.4.1)
- 7. Service button

The service button can be used for the following functions:

- IP address assignment (Sect. 4.1.1)
- Factory settings restoration (Sect. 6)

Fig. 2.3 Top view

Table 2.1	LEDs		
LED	Color	LED State	Description
	areen	Off	Power off
0	groon	On	Power on
Eth 1	areen	Off	Not connected
	green	Flashing	Data transfer over Ethernet 1 interface
Eth 2	areen	Off	Not connected
	green	Flashing	Data transfer over Ethernet 2 interface
		Off	No errors
		On	Program / configuration error
A	red	Flashing (0.1 s / 2 s)	Low battery (Sect. 4.3, App. C)
~~~	Tea	Flashing (0.1 s / 0.5 s)	No requests from master. Safe state activated
		Flashing (0.9 s / 1 s)	Hardware peripherals error (Flash, RTC, Ethernet Switch)
Output	areen	Off	Output off
I FDs (6)	groon	On	Output on
2200 (0)	red	On	Fault status (Sect. 4.9.2)



## **3** Specification

## 3.1 Specifications

## Table 3.1 General specifications

	Electrical	
Power supply	24 (10	48) V DC
Power consumption	6 W at 2	24 V DC
Polarity protection	Ye	es
Appliance class		I
	Interfaces	
Data transfer	Double Etherne	et 10/100 Mbps
	Modbu	IS TCP
Protocols	MG	PTT
	SN	MP
	NT N	
Configuration interface	USB 2.0 (N	
Outpute number		<u></u>
	10.00	
	122	28.8 V
DAC resolution	12	oits
DAC warm-up time	10 mi	nutes
Output update period, min.	200	ms
Signal	0-20 mA	0-10 V
	4-20 mA	
Maximum output ripple	25 μΑ	10 mV
Accuracy	± 0.5 %	± 0.5 %
Temperature influence	0.1 % / 10 °C	0.1 % / 10 °C
Influence of electromagnetic interference	± 0.5 %	± 0.5 %
Output short circuit protection	Ye	es
Output state diagnostics	Ye	es
Flash	-memory (log file storage)	
File size, max.	21	кВ
Number of log files, ,max.	10	00
Logging interval, min.	10	s
	Real time clock	
Accuracy	±3 s/day a	at +25 °C
	±10 s/day	at -40 °C
Backup battery	CR2	032
	Mechanical	
Dimensions	42 × 124	× 83 mm
Weight	approx	. 300 g



### 3.2 Operating conditions

The module is designed for natural convection cooling. It should considered when choosing the installation site.

The following environment conditions must be observed:

- clean, dry and controlled environment, low dust level

- closed non-hazardous areas, free of corrosive or flammable gases

Table 3.2 Operating conditions

Condition	Permissible range
Ambient temperature	
Transportation and storage	-40+55 C
Relative humidity	up to 95 % (at +35 °C, non-condencing)
Attitude	up to 2000 m ASL
IP code	IP20
Vibration / shock resistance	conforms to IEC 61131-2
EMC emission / immunity	conforms to IEC 61131-2



## 4 Configuration and operation

The device parameters can be set with akYtecToolPro or by command from a network Master. The complete parameter list is presented in Appendix D. You can also read it out from the device using the toolbar item **Parameter list** in akYtecToolPro.

The modules of Mx210 series have the following parameter groups:

- Real-time clock (Sect. 4.2)
- Battery (Sect. 4.3)
- Network (Sect. 4.4)
- Modbus slave (Sect. 4.5)
- Device status (Sect. 4.6)
- Data logging (Sect. 4.7)
- I/O groups, depending on model (Sect. 4.8, 4.9)

#### 4.1 Connection with akYtecToolPro

The connection with akYtecToolPro running on the PC can be established over the interfaces USB (Sect. 4.1.1) or Ethernet (Sect. 4.1.2).

For configuration over Ethernet, the device must be powered on. When being configured over USB, the device is powered by USB and the main power supply is not required.

#### 4.1.1 Connection over USB

#### NOTICE

The device must be powered off before being connecting to PC over USB.

#### NOTICE

When the device is powered over USB, the inputs, outputs and the Ethernet interfaces are disabled. If you need full control over the device, you have to connect the main power, but you must observe the following:

There is no galvanic isolation between digital inputs and USB interface. Equipment connected to these circuits must have the same ground potential or be galvanically isolated to avoid damage to the device.

To configure the module over USB:

- 1. Connect the microUSB programming connector of the device (Fig. 2.2. Pos. 6) to PC over a USB-to-microUSB connection cable (not included).
- 2. Start akYtecToolPro.
- 3. In a new project, click the toolbar item Add devices +U.
- 4. In an opened dialog, select the interface STMicroelectronics Virtual COM Port.
- 5. Select the protocol akYtec Autodetection Protocol.
- 6. Select Find device.
- 7. Enter the device address (factory setting: 1) and click Search.
- If the correct device is found, select it and click the button Add devices to add the device to the project.
- 9. If the device is password protected, enter the correct password.

If you forgot the password, restore the factory settings (Sect. 6).

#### 4.1.2 Connection over Ethernet

To configure the module over Ethernet:

- 1. Connect the Ethernet connector of the device to PC over the Ethernet connection cable (not included).
- 2. Connect the power cable to the removable 2-terminal block and plug it into the device.
- 3. Power on the device.



- 4. Start akYtecToolPro.
- 5. Click the toolbar item **Add devices**
- 6. In the opened dialog select the interface Ethernet.
- 7. Select Find device.
- 8. Enter the IP address (Factory setting: 192.168.1.99) and click *Search*.
- If the correct device is found, select it and click the button Add devices to add the device to the project.
- 10. If the device is password protected, enter the correct password.

If you forgot the password, restore the factory settings (Sect. 6).

#### 4.2 Real time clock

The module has a real-time clock (RTC) with a back-up battery (Sect. 4.3). The RTC time is counted as UTC in seconds, starting from 01/01/2000, 00:00.

To set the time, click the toolbar icon **Real-time clock**  $\bigcirc$  (Fig. 4.1). Use the button **Synchronize with PC** to synchronize the RTC with the PC clock. Select your time zone from the drop-down list below. You can also set the time zone in the range -720...+840 min. with a 60 min. step in the parameter group **Real-time clock**. Use the button **Save** to save the parameters in the device memory.

G						[	Dat	/ Time ×
Cu	ren	t tim	ne:					
				Date	è			Time
	∢		Ju	ne 20	)19		►	12
	Su	Мо	Tu	We	Th	Fr	Sa	S10 2
	26	27	28	29	30	31	1	
	2	3	4	5	6	7	8	
	9	10	11	12	13	14	15	
	16	17	18	19	20	21	22	
	23	24	25	26	27	28	29	South the
	30	1	2	3	4	5	6	7:38:45
						Syn	chro	nize with PC
Tim	ne z	one						
(L	JTC)	Bpe	емя	в фо	рма	ате	UTC	~
								Save Cancel

Fig. 4.1 Real-time clock parameters

The RTC is used for calculation of measuring timestamps (Sect. 4.8.5) and of *Time (ms)* parameter. *Time (ms)* is a cyclic time in milliseconds that starts with turning on and stops with turning off of the device. It is reset to zero at the end of cycle (4294967295 ms). The parameter is used for device diagnostic purposes.

To set the RTC time over Modbus network, proceed as follows:

- 1. Write the new time in the parameter New time.
- 2. Set the parameter *Apply new time* = 1 and hold the value for at least 1 second.
- 3. Set the parameter *Apply new time* = 0 and hold the value for at least 1 second.

The time value cannot be changed more than once per second.



#### 4.3 Battery

The RTC is powered by the supply voltage. When the device is powered off, RTC is powered by a replaceable battery of type CR2032.

A fully charged battery can power the RTC for 5 years. At the temperatures near the permissible limits (Tab. 3.2), the battery life time is reduced.

The parameter Voltage in the group Battery shows the battery voltage in mV.

The battery status is updated each time after powering on and then every 12 hours.

The battery should be replaced if at least one of the following events has occurred:

- LED indicator ▲ lights up for 0.2 s with a period of 2 s, which means that U_B ≤ 2 V and the battery
  has to be replaced as soon as possible, but the RTC can still work for about 2 weeks without
  power supply.
- The battery was last time replaced 6 years ago.

For battery replacement, see App. C.

#### NOTE

If the battery voltage is less than 1.6 V, the configuration parameters are written to the battery-backed RAM and then transferred to the flash memory. The recording interval depends on the load of the module processor (at least 2 minutes). Since the number of erase cycles of the flash memory is limited, it is not recommended to record the configuration parameters cyclically when the battery is low.

#### 4.4 Ethernet

To configure the Ethernet interface, open the node *Network > Ethernet* in the parameter tree.

Parameter	Description	Default value	Access
IP address	IPv4 Internet Protocol address	192.168.1.99	R
Subnet mask	IP address recognition area in the subnet	255.255.255.0	R
Gateway	IP address of the gateway	192.168.1.1	R
DNS server 1	Primary DNS server	77.88.8.8	RW
DNS server 2	Secondary DNS server	8.88.8.8	RW
New IP address	Enter new value	—	RW
New subnet mask	Enter new value	—	RW
New gateway	Enter new value	_	RW
DHCP	On / Off / Service button	Service button	RW

Table 4.1 Ethernet parameters

The Ethernet parameters can be set using:

- only main toolbar
- service button on the device (recommended if you need to configure several devices at once) (Sect. 4.4.1.)

To change Ethernet parameters using the main toolbar:

- 1. Enter new values for the parameters New IP address, New subnet mask and New gateway
- 2. set the parameter DHCP to Off
- 3. Click the toolbar item *Write parameters*  $\checkmark$
- 4. Click the toolbar item Restart device
- 5. If you want to check the new parameters or continue configuring the device, you must add it again to the project with the new network parameters.

If a dynamic IP address is required (e.g. to use a cloud service), set **DHCP** to **On**.

#### 4.4.1 Network parameters setting using service button

If you need to assign IP addresses for several modules, it is more comfortable to use service buttons on devices (Fig. 2.2. Pos. 7), previously having all the modules connected to the PC over Ethernet.



To change the Ethernet parameters using service buttons:

- 1. Connect all modules in series to the PC over Dual Ethernet ports (Fig. 2.3. Pos. 2)
- 2. Power on the modules
- 3. Start akYtecToolPro
- 4. Set the parameter DHCP to Service button on all modules
- 5. Click the toolbar item *IP addresses* |P|
- 6. Set the IP address for the first module from the group
- 7. Press the service buttons on the modules sequentially, checking the result in the dialog box, where will be indicated on which module the button was pressed. The specified static IP address and other network parameters, if any have been changed, are assigned to this module. The address is automatically incremented by 1 for each subsequent device.

Only Ethernet parameters will be changed, other parameters will not be affected. If you forgot the IP address, you can find it in akYtec Tool Pro by connecting the module to your computer using USB.

#### 4.5 Modbus Slave

The module can operate in Modbus TCP network as a slave, using the port 502 and the standard address 1. The address can be changed in the group *Modbus Slave* (Tab. 4.2). The device can handle maximum 4 Modbus TCP connections. For details on Modbus working see Appendix D. For Modbus protocol specifications see <u>Modbus specifications</u>.

Table 4.2 Modbus Slave parameters

Parameter	Description	Range	Default value	Access
Slave address	Device address in a Modbus network	1254	1	RW
Safe state timeout	Output safe state activation delay after communication interruption (Sect. 4.9.1)	060 s	30	RW

#### 4.6 Data logging

An archive is saved as a set of encrypted log files. A log file consists of a set of records separated by line break characters (0x0A0D). Each record corresponds to one parameter and consists of fields separated by semicolon. The format of the record is described in Tab. 4.4.

Field	Туре	Size	Comment
Time	binary	4 Byte	In seconds, beginning from 01/01/2000, 00:00 (UTC+0)
Separator	string	1 Byte	Semicolon (;)
UID (parameter ID)	string	8 Byte	String of HEX characters with leading zeros
Separator	string	1 Byte	Semicolon (;)
Parameter value	string	parameter depending	String of HEX characters with leading zeros
Separator	string	1 Byte	Semicolon (;)
Parameter status	binary	1 Byte	<ul> <li>1 – value correct</li> <li>0 – value incorrect, further processing not recommended</li> </ul>
New line	binary	2 Bytes	0x0A0D

Table 4.3 Record format

Log files are stored in a built-in flash memory, formatted as a file system with encryption. For flash memory specifications see section "Flash memory" in Table 3.1.

If an archive overflows, the new entry will overwrite the oldest one in the archive.

The archiving parameters are described in Tab. 4.5.

To view all logged parameters, use the toolbar item **Device information** in akYtecToolPro. The archive can be read with via Modbus TCP using function 20 (Tab. D.3). This function allows reading one or several records from one or several files in one request. For details on function usage see *Modbus specifications*.



The file number in the Modbus request should be calculated as file ID + 4096. File indexing starts with zero. The parameter *Last log file ID* contains the ID of the archive file to which the data was last written.

The time zone is not contained in the file but can be read from the parameter *Time zone* (Tab. D.1).

Parameter	Description	Range	Default value	Access
Logging interval	Time interval with which the values of the selected parameters will be recorded	103600 s	30	RW
Number of files	Maximum number of archive files	10300	100	RW
File size	Log file size in Bytes	2002048	2048	RW
Last log file ID	ID of the last written file	065535	—	R

#### Table 4.4 Archiving parameters

#### 4.7 Analog outputs

The device has 8 analog outputs. Each output can be configured for the following operation mode:

- 0 ... 20 mA;
- 4 ... 20 mA;
- 0...1V;
- 0 ... 10 V.

Each output can be configured to any of the above modes of operation, regardless of the mode of operation of other outputs.

The level of the analog output can be set by writing values to the corresponding registers using the Modbus protocol. The value is set in fractions of percent from 0 to 1000 (which corresponds to a value from 0 to 100% with an accuracy of 0.1%) or in physical quantities – microamperes (for the modes  $0 \dots 20 \text{ mA}$  and  $4 \dots 20 \text{ mA}$ ) or in millivolts (for the modes  $0 \dots 1 \text{ V}$  and  $0 \dots 10 \text{ V}$ ). When setting a value in one register, the value in the other is automatically recalculated.

#### 4.7.1 Safe output status

For each output, it is possible to set the safe state of the output in the Safe state parameter (from 0 to 100%).

The output switches to the safe state, if at the time of turn-on or during the time-out there are no commands from the Network Master. If the time-out value is set to 0, then the output does not go to a safe state.

When the main power supply of the Module is disconnected and the output elements are powered, all outputs will switch to the 0 V (for modes 0...1 V and 0...10 V), 0 mA (for mode 0...20 mA) and 4 mA (for mode 4...20 mA) state. The maximum time to go to a safe state after the main power supply fails is 9 seconds.

#### 4.7.2 Output diagnostics

Following output malfunctions can be detected:

- no DAC response (no output power supply)
- load short circuit (only for 0...10 V)
- no output load (only for mode 0...20 mA and 4...20 mA)

If a fault is detected, 1 is written to the corresponding bit of the output bit mask. The type of error is written in the output state register. The failed output indicator lights red.

If the fault type is **Output stage overheating** or **Load short circuit**, the faulty output is switched off periodically to keep it working.

#### 4.8 NTP protocol

The module supports the synchronization of the RTC with an NTP server v4. Open the *NTP* group to configure NTP parameters.

Parameter	Description	Range	Default value	Ac- cess
Enable	Enable NTP connection	On / Off	Off	RW
NTP server pool	IP or URL of NTP pool. If the server is located in an external network, check the correct values for the parameters <i>Gateway</i> and <i>DNS</i> ( <i>Network</i> group)	_	pool.ntp.org	RW
NTP server 1	IP or URL of the primary NTP server	—	192.168.1.1	RW
NTP server 2	IP or URL of the secondary NTP server	—	192.168.1.2	RW
Synchroniza- tion period	Time synchronization period in seconds. Ensure the set value is not less than the minimum value for the selected NTP server	565535 s	5	RW
Status	Server connection status			R

|--|

All specified NTP servers (including servers from the pool) have the same polling priority. For more information see document: *NTP_MQTT_SNMP_protocols*.

#### 4.9 MQTT protocol

#### 4.9.1 Basics

The MQTT protocol defines two types of network entities: a message **broker** and a number of clients. Broker is a server that receives all messages from the clients and then routes the messages to the appropriate destination clients. Client can be **publisher** or / and **subscriber**.

Published messages are organized in a hierarchy of *topics*. When a publisher has a new data to distribute, it sends a message with the data under the particular topic to the connected broker. The broker distributes the message to any clients that have subscribed to that topic.

A topic is a UTF-8 encoded character string that the broker uses to filter messages for each connected client. The topic consists of one or more topic *levels*. Each topic level is separated by a forward slash (topic level separator).

When a client subscribes to a topic, it can subscribe to the exact topic of a published message or it can use wildcards to subscribe to multiple topics simultaneously. There are two kinds of wildcard symbols: *single-level* (+) and *multi-level* (#) (see *Example*).

#### 4.9.2 Implementation

The module supports the MQTT protocol (v3.1.1) and can be used as client. It can publish information about the status of its inputs and outputs and can be subscribed to topics which control its outputs.

To configure the MQTT parameters, open the **MQTT** group in the parameter tree.

NOTE

When using the MQTT protocol, it is recommended to set the parameter "Safe state timeout" ("Modbus Slave" group) to 0, since writing is usually event-driven and not cyclic in this case.

Parameter	Description	Range	Default value	Access
Presence detection. Enable	If <b>On</b> , the module publishes the message "Online" to the topic specified in the parameter <b>Topic</b> <b>name</b> after switching on. If no messages are received from the module, the broker publishes an "Offline" message in this topic.	On / Off	Off	RW
Presence detection. Topic name	Topic name used for presence detection.	_	MQTT status	RW
Connect to broker	Set to <b>On</b> to establish connection	On / Off	Off	RW
User name	Used for device authentication on the broker side. Authentication is		_	RW

Table 4.6 MQTT parameters



Parameter	Description	Range	Default value	Access
Password	not used if the values are not specified.	_	_	RW
Device name	Device name used in the topic name (see Example)	_	_	RW
Broker address	Broker IP or URL. If the broker is located in an external network, check the correct values for the parameters <i>Gateway</i> and <i>DNS</i> ( <i>Network</i> group)	_	_	RW
Port	Port for broken	065535	1883	RW
Store last message	If <b>On</b> , other clients subscribed to the module's topics will receive the latest messages from these topics.	On / Off	Off	RW
Publishing interval	Publishing interval in seconds	5600	10	RW
Quality of service	Ality of vice QoS1 - at most once QoS1 - at least once QoS2 - exactly once		QoS0	RW
Keep Alive	Keep Alive interval in seconds	0600	0	RW
Status	Broker connection status			R

#### Table 4.7 Topics

Parameter	Topic Node		Function	Format
Output value in ‰ (0,10 %)	VALUE_PERCENT	AO1AO6	GET/SET	REAL
Output value in mV/μA	VALUE_PHYS	AO1AO6	GET/SET	REAL

#### Example:

Device - device name specified in akYtecToolPro

- Write output value in ‰ (0,10 %) MX210/Device/SET/AO1/VALUE_PERCENT
- 2. Write the digital outputs bitmask

MX210/Device/SET/DO/MASK

Recorded value: 15 (outputs 1-4 set)

- 3. Single-level wildcard usage
  - MX210/Device/GET/+/COUNTER

Obtained value: counter values of all digital inputs. The topic is equivalent to the group of topics:

MX210/Device/GET/DI1/COUNTER

MX210/Device/GET/DI2/COUNTER

MX210/Device/GET/.../COUNTER

MX210/Device/GET/DIn/COUNTER

4. Multi-level wildcard usage

MX210/Device/GET/#

Obtained value: all module parameters available for reading. The topic is equivalent to a group of topics:

MX210/Device/GET/DI/MASK

MX210/Device/GET/DI1/COUNTER

MX210/Device/GET/DI2/COUNTER

MX210/Device/GET/.../COUNTER

MX210/Device/GET/DIn/COUNTER



For more information see document: NTP_MQTT_SNMP_protocols.

#### 4.10 SNMP protocol

#### 4.10.1 Basics

The protocol is based on the Client / Server architecture, where clients are called managers and servers are called agents.

Managers can read (GET) and write (SET) agent parameters. Agents can send messages (traps) to managers about changes in any parameter.

Each agent parameter has a unique identifier (OID - object identifier), which is a sequence of numbers separated by periods.

#### 4.10.2 Implementation

The module supports SNMP protocol (SNMPv1 and SNMPv2c versions) and can be used as an agent with GET and SET requests.

All module parameters are available via SNMP protocol. The list of parameters is given in App. D.

NOTE

When using the SNMP protocol without GET requests, it is recommended to set the parameter "Safe state timeout" (Modbus Slave group) to 0, since writing is usually event-driven and not cyclic in this case.

Parameter	Description	Range	Default value	Access
Enable	Enable SNMP connection	On / Off	Off	RW
Read community	Password for read access	_	public	RW
Write community	Password for write access	_	private	RW
Trap IP address	IP address to which the trap will be sent in case of changing the mask of the digital inputs (modules with digital inputs only)	_	10.2.4.78	RW
Trap port	Port number to which the trap will be sent	065535	162	RW
SNMP version	Protocol version	SNMPv1 / SNMPv2	SNMPv1	RW

Table 4.8 SNMP parameters

For more information see document: <u>NTP_MQTT_SNMP_protocols</u>.

#### 4.10.3 Password

You can use password to protect the configuration parameters of the device from an unauthorized access. To set the password, use the toolbar item **Password** for the same item in the device context menu. There is no password by default.

If you forgot the password, restore the factory settings (Sect. 6).



## 5 Installation

The safety requirements from the section 1.5 must be observed.

#### 5.1 Mounting

The device is designed to be installed on DIN rail or using two screws on a mounting panel in an electric cabinet.

The operating conditions from the Sect. 3.2 must be considered when choosing the installation site. Dimensional drawings are given in Appendix A. Only the vertical positioning of the device is allowed.



Fig. 5.1 DIN rail mounting

Device replacement (Fig. 5.2):

- switch off the power supply of the module and all connected devices
- open the front cover 1
- loosen the two screws 3
- remove the terminal block 2
- Now you can replace the device.

Reverse this procedure after replacing the device.



Fig. 5.2 Remove terminal block

#### 5.2 Wiring

## WARNING

The device must be powered off before connecting to peripheral equipment or PC. Switch on the power supply only after the wiring of the device has been completed.

**NOTICE** *Ensure that the input signal is connected to the correct input terminals and that the input configuration corresponds to the signal. Non-observance can cause the device damage.* 

## 

To ensure compliance with the EMC requirements:

- Signal cables should be routed separately or screened from the supply cables.
- Shielded cable should be used for the signal lines.



#### 5.2.1 General information

Power supply terminals and Ethernet interfaces are placed on the top of the device (Fig. 2.3. Pos. 1). Mating plug for the power supply is included.

Terminal assignments are given in Fig. 5.3 and Tab. 5.1.

Electrical connections for inputs and outputs are given in Fig. 5.4...5.5.

Maximum conductor cross-section is 1.0 mm².

Plug-in terminal block for power supply and removable terminal block for I/O connections enable quick and easy replacement of the device (see Fig. 5.2).

When wiring is completed, the wires should be placed in a special recess under the cover so that adjacent devices can be placed on the DIN rail close to each other.



Fig. 5.3 Front view (open cover)

Table 5.1	Terminal assignments	
-----------	----------------------	--

Marking	Description
AO1AAO6A	Output power supply (+)
AO1BAO6B	Analog outputs
AO1CAO6C	Common power contacts (-)

 $\mathbf{\hat{n}}$ 

NOTICE

The length of the analog output power line must not exceed 30 m.

## NOTICE

Do not connect any wires to NC terminals.



#### 5.2.2 Analog outputs



Fig. 5.4 Analog output wiring

Table 5.2 Power supply voltage

Mode	Resistance	Power supply
4–20 mA, 0–20 мА	400600 Ω	24 V
0–10 V	—	24 V

If the **0...20 mA** or **4...20 mA** mode is selected and the load resistance is less than that allowed for the corresponding supply voltage, then a limiting resistor must be connected in series with the load.



Fig. 5.5 Limiting resistor wiring

## 5.2.3 Ethernet

The Ethernet connection can be established in a star or daisy chain topology (Fig. <u>5.6</u>, <u>5.7</u>). It is recommended to seal the unused connector with a rubber plug (included). Star topology:

- The maximum length of the network lines between modules is 100 m.
- Both Ethernet connectors can be used.





Fig. 5.6 Star topology

Chain topology:

- maximum section length is 100 m
- realized with two Ethernet connectors
- If the module fails (device error or power supply loss), the data is transferred directly from connector 1 to connector 2 (auto-bypass).



Fig. 5.7 Chain topology

## 6 Factory settings restoration

# **i** NOTE

After restoring the factory settings all parameters but Ethernet will be reset to default values and the password deleted. The Ethernet parameters will not be affected.

To restore the factory settings:

- 1. Power on the device
- 2. Open the front cover
- 3. Using a thin tool, press and hold the service button (Fig. 2.2. Pos. 7) for at least 12 seconds
- 4. Close the cover

The device will operate with the default parameters.



## 7 Maintenance



The maintenance includes:

- cleaning of the housing and terminal blocks from dust, dirt and debris
- checking the device fastening
- checking the wiring (connecting wires, terminal connections, absence of mechanical damages).



The device should be cleaned with a damp cloth only. No abrasives or solventcontaining cleaners may be used.



## 8 Transportation and storage

Pack the device in such a way as to protect it reliably against impact for storage and transportation. The original packaging provides optimum protection.

If the device is not taken immediately after delivery into operation, it must be carefully stored at a protected location. The device should not be stored in an atmosphere with chemically active substances.

The environmental conditions from the Sect. 3.2 must be considered during transportation and storage.

## 

The device may have been damaged during transportation. Check the device for transport damage and completeness! Report the transport damage immediately to the shipper and akYtec GmbH.



## 9 Scope of delivery

_	MU210-502	1
_	Ethernet connection cable	1
_	2-pole plug-in terminal block	1
_	Rubber plug	1
_	Short guide	1



## Appendix A. Dimensions



Fig. A.1 External dimensions



Fig. A.2 Wall mounting dimensions



## Appendix B. Galvanic isolation



Fig. B.1 Galvanic isolation

The test voltages shown in Fig. B.1 correspond to the tests carried out under normal operating conditions with 1 minute exposure time.



## Appendix C. Battery replacement

To replace the battery, proceed as follows:

- 1. Power off the module and all connected devices
- 2. Remove the terminal blocks without disconnecting the connected wires (Fig. 5.2)
- 3. Remove the module from the DIN rail
- 4. Remove the front part the enclosure by opening the four side latches one-by-one using a flat screwdriver (Fig. C.1)
- 5. Replace the battery.

The replacement should not take longer than one minute. Otherwise, the real-time clock has to be adjusted anew.



Fig. C.1 Battery replacement



## Appendix D. Modbus application

Table D.1 Modbus register

Paramotor	Value	Linit Ac-		Address		Data type
Falameter		Onit	cess	hex	dec	Bala type
	Devi	ce infor	mation			
Device name (dev)	—	—	R	0xF000	61440	String32
Firmware version (ver)	—		R	0xF010	61456	String32
Platform name	—	_	R	0xF020	61472	String32
Platform version	—	_	R	0xF030	61488	String32
Hardware version	—	_	R	0xF040	61504	String32
Additional text information	_	_	R	0xF048	61512	String32
S/N	—		R	0xF084	61572	String32
MAC address	—		R	0xF100	61696	UINT48
	Re	al-time o	clock			
Time	—	S	R	0xF080	61568	DATETIME
Time zone	—	min	RW	0xF082	61570	TIMEZONE
Time (ms)	04294967295	ms	R	0xF07B	61563	UINT32
New time	—	S	RW	0xF07D	61565	DATETIME
Apply new time	0 – off / 1 – on	_	RW	0xF07F	61567	UINT16
	Netv	vork / Et	hernet			
IP address	—	_	R	0x001A	26	UINT32
Subnet mask	—	—	R	0x001C	28	UINT32
Gateway	—	—	R	0x001E	30	UINT32
DNS server 1	—	—	RW	0x000C	12	UINT32
DNS server 2	—	_	RW	0x000E	14	UINT32
New IP address	—	_	RW	0x0014	20	UINT32
New subnet mask	—	_	RW	0x0016	22	UINT32
New gateway	—	_	RW	0x0018	24	UINT32
	0 – off					
DHCP	1 - 0n		—	0x0020	26	UINT16
	2 – Service					
	button	Batter	y			
Voltage	03300	mV	R	0x0321	801	UINT16
	M	odbus S	lave	<u> </u>		
Safe state timeout	060	S	RW	0x02BC	700	UINT8
	D	ata logo	jing			1
Logging interval	103600	s	RW	0x0384	900	UINT16



Deremeter	Value	Unit	Ac-	Add	ress	Data typo
Parameter	value	Unit	cess	hex	dec	Data type
	Analog	output	s / Single	•		_
AO1 value in ‰	01000	‰	RW	0xBB8	3000	UINT16
AO6 value in ‰	01000	‰	RW	0xBBD	3005	UINT16
AO1 safe state in ‰	01000	‰	RW	0xBD8	3032	UINT16
AO6 safe state in ‰	100060000	%	RW	0xBDD	3037	UINT16
AO1 value in mV/µA	065535	μA	RW	0xBF8	3064	UINT16
AO6 value in mV/µA	065535	mV/ μA	RW	0xBFD	3069	UINT16
AO1 status	0 – normal 2 – no load 3 – DAC overheating 5 – off 6 – short circuit	_	RW	0xC38	3128	UINT16
AO6 status	0 – normal 2 – no load 3 – DAC overheating 5 – off <u>6 – short circuit</u>		RW	0xC3D	3133	UINT16
AO1 mode	0 – off 1 – reserved (off) 2 – 0–10 V 3 – 0–20 mA 4 – 4–20 mA	_	RW	0xC58	3160	UINT16
AO6 mode	0 – off 1 – reserved (off) 2 – 0–10 V 3 – 0–20 mA 4 – 4–20 mA	_	RW	0xC5D	3165	UINT16
	Analog	output	s / Group	)		_
Output diagnostics	0FF	—	R	0xC78	3192	UINT8
Output status after overheating	0 – off / 1 – restore values		RW	0x0FA1	4001	UINT16
Device temperature	-200200	°C	R	0xF0B8	61624	FLOAT32
		NTP				_
Enable	0 – off / 1 – on	—	RW	0x1600	5632	UINT16
NTP server pool	—	—	RW	0x1601	5633	String32
NTP server 1	—	—	RW	0x1641	5697	UINT32
NTP server 2	—	—	RW	0x1643	5699	UINT32
Synchronization period	565535	S	RW	0x1645	5701	UINT16
NTP status	0 – off 1 – on 2 – synchronized	—	RW	0x1646	5702	UINT16
		MQTT				
Connect to broker	0 – off / 1 – on		RW	0x1700	5888	UINT16
User name	—		RW	0x1728	5928	String32
Password	—	—	RW	0x1748	5960	String32



Deremeter	Value	Value		Add	Data type	
Parameter	value	Unit	cess	hex	dec	Data type
Device name	—	—	RW	0x1708	5896	String32
Broker address	—	—	RW	0x1769	5993	String32
Port	065535	—	RW	0x1703	5891	UINT16
Store last message	0 – off / 1 – on	—	RW	0x1707	5895	UINT16
Publishing interval	5600	S	RW	0x1704	5892	UINT16
	0 – QoS0					
Quality of service	1 – QoS1	—	RW	0x1705	5893	UINT16
	2 – QoS2					
Keep Alive	0600	S	RW	0x1768	5992	UINT16
	0 – off					
Status	1 – on	_	R	0x1789	6025	LIINT16
Oldido	2 – connection			0,1700	0020	Circino
	error					
Enable	0 – off / 1 – on	—	RW	0x178A	6026	UINT16
		SNMP	1			
Enable	0 – off / 1 – on	—	RW	0x1400	5120	UINT16
Read community	—	—	RW	0x1771	6001	String32
Write community	—	—	RW	0x1781	6017	String32
Trap IP address	—	—	RW	0x1401	5121	UINT32
Trap port	065535	—	RW	0x1403	5123	UINT16
	0 – SNMPv1			0.4404	E404	
SINIVIP VERSION	1 – SNMPv2		RVV	UX1404	5124	UINTI6

#### Table D.2 Data types

Data type	Size (registers)	Size (bytes)	Description
UINT8	1	1	Unsigned integer
UINT16	1	2	Unsigned integer
UINT32	2	4	Unsigned integer
UINT48	3	6	Unsigned integer
INT16	1	2	Signed integer
String16	8	16	String of characters (Win-1251 code page)
String32	16	32	String of characters (Win-1251 code page)
DATETIME	2	4	UINT32, time in seconds, starting from 01/01/2000, 00:00
TIMEZONE	1	2	INT16, difference between UTC and local time in minutes

Table D.3 Modbus functions

Code	Name	Description
03 (0x03)	Read Holding Registers	Read the contents of a contiguous block of holding register
04 (0x04)	Read Input Registers	Read from 1 to 125 contiguous input registers
06 (0x06)	Write Single Register	Write a single holding register
16 (0x10)	Write Multiple Registers	Write a block of contiguous registers (1 to 123 registers)
20 (0x14)	Read File Record	Read file as a set of records
21 (0x15)	Write File Record	Write file as a set of records



Table D.4 N	Aodbus error	codes
-------------	--------------	-------

Code	Name	Description
01	Illegal Function	The received function code is not recognized or accepted by slave
02	Illegal Data Address	Data address of some or all the required entities are not allowed or do not exist in slave
03	Illegal Data Value	Value is not accepted by slave
04	Slave Device Failure	Unrecoverable error occurred while slave was attempting to perform requested action