

MV210-101

Analog-Eingangsmodul

Bedienungsanleitung

MV210-101_3-DE-34798-2.6 © Alle Rechte vorbehalten Technische Änderungen und Druckfehler vorbehalten.

Inhaltsverzeichnis

1. Einleitung	3
1.1. Begriffe und Abkürzungen	3
1.2. Symbole und Schlüsselwörter	3
1.3. Bestimmungsgemäße Verwendung	3
1.4. Haftungsbeschränkung	4
1.5. Sicherheit	4
2. Übersicht	5
2.1. Grundfunktionen	5
2.2. Design / LEDs	5
3. Technische Daten	7
3.1. Spezifikationstabellen	7
3.2. Betriebsbedingungen	8
4. Konfiguration und Betrieb	10
4.1. Verbindung mit akYtecToolPro	10
4.1.1. Verbindung über USB	10
4.1.2. Verbindung über Ethernet	
4.2. Echtzeituhr	
4.3. Batterie	12
4.4. Ethernet	12
4.4.1. Einstellungen der Netzwerkparameter mit Service-Taste	13
4.5. Modbus Slave	13
4.6. Gerätezustand	13
4.7. Datenerfassung	14
4.8. Analogeingänge	14
4.8.1. Eingans-Abfrage	15
4.8.2. Signalskalierung	15
4.8.3. Signalfilterung	16
4.8.4. Sensorkurvenkorrektur	16
4.8.5. Signalskalierung	16
4.8.6. Eingangsmesswerte	17
4.8.7. Sensordiagnose	17
4.8.8. Vergleichsstellenkompensation	18
4.9. NTP-Protokoll	18
4.10. MQTT-Protokoll	18
4.10.1. Grundlagen	18
4.10.2. Implementierung	18
4.11. SNMP-Protokoll	20
4.11.1. Grundlagen	20
4.11.2. Implementierung	20
4.12. Passwort	21
5. Installation	22
5.1. Montage	22
5.1.1. Elektrische Anschlüsse	22
5.1.2. Allgemeine Informationen	23
5.1.3. Ethernet	26

6. Wiederherstellen von Werkeinstellungen	28
7. Wartung	29
8. Transport und Lagerung	30
9. Lieferumfang	31
Appendix A. Abmessungen	
Appendix B. Galvanische Trennung	33
Appendix C. Batteriewechsel	
Appendix D. Modbus-Anwendung	35

1 Einleitung

1.1 Begriffe und Abkürzungen

akYtecToolPro - Konfigurationssoftware

ADC - Analog-Digital-Wandler

DAC – Digital-Analog-Wandler

Modbus – Messaging-Protokoll auf Anwendungsebene für die Client / Server-Kommunikation zwischen Geräten, die an verschiedene Arten von Bussen oder Netzwerken angeschossen sind. Dieses Protokoll wurde ursprünglich von Modicon (jetzt Schneider Electric) veröffentlicht und wird derzeit von einer unabhängigen Organisation Modbus-IDA unterstützt (https://modbus.org/)

NTP - Network Time Protocol

MQTT – Message Queuing Telemetry Transport, ein offenes Netzwerkprotokoll für Machine-to-Machine-Kommunikation

SNMP – Simple Network Management Protocol, ein Internet-Standardprotokoll zum Sammeln und Organisieren von Informationen über verwaltete Geräte in IP-Netzwerken und zum Ändern dieser Informationen, um das Geräteverhalten zu ändern

PWM – Pulsweitenmodulation

RTC - Echtzeituhr

RTD - Widerstandsthermometer

TC – Thermoelement

UTC – Coordinated Universal Time, weltweiter primärer Zeitstandard

1.2 Symbole und Schlüsselwörter

WARNUNG

Das Schlüsselwort WARNUNG weist auf eine potenzielle Gefahrensituation hin, die zum Tode oder zu schweren Verletzungen führen kann.

VORSICHT

Das Schlüsselwort VORSICHT weist auf eine potenzielle Gefahrensituation hin, die zu leichten Verletzungen führen kann.

ACHTUNG

Das Schlüsselwort ACHTUNG weist auf eine potenzielle Gefahrensituation hin, die zu Sachschäden führen kann.

HINWEIS

Das Schlüsselwort HINWEIS weist auf hilfreiche Tipps und Empfehlungen sowie Informationen für effizienten und reibungslosen Betrieb hin.

1.3 Bestimmungsgemäße Verwendung

Das Gerät wurde ausschließlich für den in dieser Bedienungsanleitung beschriebenen Verwendungszweck entwickelt und gebaut und dürfen nur entsprechend verwendet werden. Die technischen Spezifikationen in dieser Bedienungsanleitung müssen beachtet werden. Das Relais darf nur in ordnungsgemäß installiertem Zustand betrieben werden.

Nicht bestimmungsgemäße Verwendung

Jede andere Verwendung gilt als nicht bestimmungsgemäß. Besonders zu beachten ist hierbei:

- Das Gerät darf nicht in medizinischen Einrichtungen verwendet werden.
- Das Gerät darf nicht in explosionsfähiger Umgebung eingesetzt werden.
- Das Gerät darf nicht eingesetzt werden in einer Atmosphäre, in der ein chemisch aktiver Stoff vorhanden ist.

1.4 Haftungsbeschränkung

Unser Unternehmen übernimmt keine Verantwortung für Ausfälle oder Schäden, die durch die Verwendung des Produkts auf eine andere als die in dieser Anleitung beschriebene Weise oder unter Verstoß gegen die aktuellen Vorschriften und technischen Standards verursacht werden.

1.5 Sicherheit

WARNUNG

Stellen Sie sicher, dass die Netzspannung mit der auf dem Typenschild angegebenen Spannung übereinstimmt.

Stellen Sie sicher, dass das Gerät über eine eigene Stromleitung und eine elektrische Sicherung verfügt.

WARNUNG

Die Geräteklemmen können unter gefährlicher Spannung stehen. Trennen Sie alle Stromleitungen, bevor Sie am Gerät arbeiten.

Schalten Sie die Stromversorgung erst ein, wenn alle Arbeiten am Gerät abgeschlossen sind.

ACHTUNG

Die Versorgungsspannung darf 48 V nicht überschreiten. Eine höhere Spannung kann das Gerät beschädigen.

Wenn die Versorgungsspannung unter 10 V DC liegt, kann das Gerät nicht ordnungsgemäß funktionieren, wird jedoch nicht beschädigt.

ACHTUNG

Wenn das Gerät von einer kalten in eine warme Umgebung gebracht wird, kann sich im Gerät Kondenswasser bilden. Um Schäden am Gerät zu vermeiden, halten Sie das Gerät vor dem Einschalten mindestens 1 Stunde lang in der warmen Umgebung.

2 Übersicht

MV210-101 ist ein Erweiterungsmodul mit 8 analogen Eingängen.

Das Modul arbeitet als Slave im Ethernet-Netzwerk mit dem Modbus TCP-Protokoll.

Das Gerät ist für den Einsatz in der industriellen Automatisierung zur Erstellung dezentraler Steuerungssysteme vorgesehen.

Das Modul kann mit der Konfigurationssoftware akYtecToolPro (kostenlos) über eine USB- oder Ethernet-Schnittstelle konfiguriert werden (Abschn. 4). Die Software kann von unserer Homepage <u>akYtec.de</u> heruntergeladen werden.

2.1 Grundfunktionen

- 8 analoge Ausgänge (Abschn. 4.8)
- RTD, TC, aktive lineare Sensoren (U, I), passive lineare Sensoren (R), Schaltkontakte unterstützt (Tab. 3.2)
- Gerät- und Eingangs-Statusanzeigen (Abschn. 2.2)
- Dual Ethernet (Abschn. 4.4, 5.2.3)
- Slave im Modbus-Netzwerk über Ethernet (Abschn. 4.5)
- USB-Konfigurationsschnittstelle (Abschn. 4.1.1)
- Echtzeituhr (Abschn. 4.2)
- Datenerfassung und -Archivierung (Abschn. 4.7)
- Gerätediagnose (Abschn. 4.6)
- Fehleranzeige (Tabelle 2.1)
- Hutschienen- oder Wandmontage (Abschn. 5.1)

2.2 Design / LEDs

Das Gerät ist in einem Kunststoffgehäuse für die Hutschienen- oder Wandmontage ausgeführt (Abschn. 5.1). Steckklemmen ermöglichen einen schnellen und einfachen Austausch des Geräts.

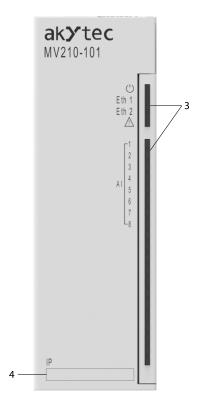


Abb. 2.1 Frontansicht (geschlossene Abdeckung)

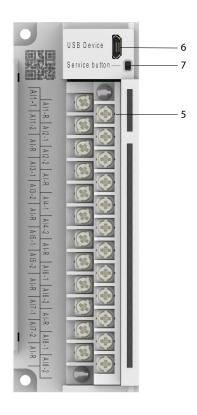


Abb. 2.2 Frontansicht (offene Abdeckung)

Auf der oberen Seite des Geräts:

- 1. Stromversorgungsklemmen
- 2. 2 Ethernet-Anschlüsse (Kap. 4.4, 5.2.4)

Auf der Frontabdeckung:

- 3. LED-Anzeigen (Tab. 2.1)
- 4. Aussparung für einen Aufkleber mir der IP-

Adresse

Unter der Frontabdeckung:

- 5. E/A-Steckklemmenblock (Kap. 5.2)
- 6. Micro-USB-Programmieranschluss (Kap. 4.1.1)
- 7. Service-Taste

Die Service-Taste kann für die folgenden Funktionen verwendet werden:

- Zuweisung der IP-Adresse (Kap. 4.4.1)
- Wiederherstellung der Werkseinstellungen (Kap. 6)

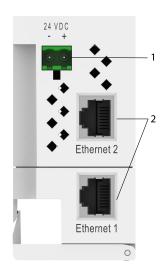


Abb. 2.3 Draufsicht

Tabelle 2.1 LEDs

LED	Farbe	Zustand	Beschreibung
(')	grün	Aus	Stromversorgung ausgeschaltet
	grun	Ein	Stromversorgung eingeschaltet
		Aus	Nicht verbunden
Eth 1	grün	Blinkend	Datenübertragung über Eth 1- Schnittstelle
		Aus	Nicht verbunden
Eth 2	grün	Blinkend	Datenübertragung über Eth 2- Schnittstelle
		Aus	Kein Fehler
		Ein	Programm- / Konfigurationsfehler
		Blinkend (0.1 s / 2 s)	Batterie schwach (Kap. 4.3, Anh. C)
<u> </u>	Blinkend (0.1 s / 0.5 s)	Keine Anfragen vom Master. Sicherer Zustand aktiviert	
		Blinkend (0.9 s / 1 s)	Fehler bei Hardware- Peripheriegeräten (Flash, RTC, Ethernet Switch)
		Aus	Eingang ausgeschaltet
Finance		Ein	Eingang ausgewählt
Eingangs- LEDs (8)		Blinkend	Messung läuft
[[[[]	orange	Ein	Unkritischer Eingangsfehler
	rot	Ein	Kritischer Eingangsfehler

8 DIP-Schalter auf der rechten Seite des Gehäuses dienen zum Einschalten der integrierten 51 Ω -Shunt-Widerstände im ausgewählten Eingang.

- Position 1 Stromeingangssignale
- Position 0 andere Eingangssignale

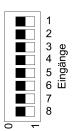


Abb. 2.4 DIP-Schalter

3 Technische Daten

3.1 Spezifikationstabellen

Tabelle 3.1 Allgemeine technische Daten

	Ele	ektrisch	
Spannungsversorgung		24 (1048) V DC	
Leistungsaufnahme, max.		4 W bei 24 V DC	
Verpolungsschutz		ja	
Schutzklasse		II	
	Sch	nittstellen	
Datenübertragung		Double Ethernet 10/100 Mbps	
		Modbus TCP	
	Protokolle	MQTT	
	Protokolle	SNMP	
		NTP	
Konfigurations-Schnitts	stalla	USB 2.0 (micro-USB)	
Koningurations-Scrinitis	Stelle	Ethernet 10/100 Mbps	
	Analo	ogeingänge	
Eingänge		8	
Eingangssignal		siehe Tab. 3.2	
ADC-Auflösung		16 bit	
Alatantanit una Einenan	RTD	0,9 s	
Abtastzeit pro Eingang max.*		0,6 s	
max.	Lineare Signale	0,6 s	
	RTD	0,25 %	
Grundfehler	TC	0,5 %	
	Lineare Signale	0,25 %	
Einfluss von elektroma	gnetischen Störungen	0,25 %	
Temperatureinfluss		20 % Grundfehler / 10 °C	
Integrierter Shunt-Wide		51 Ω	
	Flash-Speicher (Speich	nerung von Protokolldateien)	
Dateigröße, max.		2 kB	
Anzahl der Dateien, ma		1000	
Aufzeichnungsintervall		10 s	
	Ec	htzeituhr	
Genauigkeit		± 1 s/Tag bei +25 °C	
		± 3 s/Tag bei -40 °C	
Backup-Batterie		CR2032	
	Me	chanisch	
Abmessungen		42 × 124 × 83 mm	
Gewischt		ca. 260 g	

^{*} Die volle Abtastzeit ist die Summe der Abtastzeiten aller Eingänge.

Tabelle 3.2 Sensoren / Eingangssignale

Eingangs- signal	Temperatur- koeffizient α, °C-1	Messbereich	Grund- fehler, %	Wert des niedrigwer- tigsten Bits	Standard
		R	RTD		
Pt50	0,00385	-200+850 °C	0,25	0,1 °C	IEC 60751:2008
Pt100	0,00385	-200+850 °C	0,25	0,1 °C	IEC 60751:2008
Pt500	0,00385	-200+850 °C	0,25	0,1 °C	IEC 60751:2008
Pt1000	0,00385	-200+850 °C	0,25	0,1 °C	IEC 60751:2008

Eingangs- signal	Temperatur- koeffizient α, °C-1	Messbereich	Grund- fehler, %	Wert des niedrigwer- tigsten Bits	Standard
50P	0,00391	-200+850 °C	0,25	0,1 °C	GOST 6651-2009
100P	0,00391	-200+850 °C	0,25	0,1 °C	GOST 6651-2009
500P	0,00391	-200+850 °C	0,25	0,1 °C	GOST 6651-2009
1000P	0,00391	-200+850 °C	0,25	0,1 °C	GOST 6651-2009
Cu50	0,00426	-50+200 °C	0,25	0,1 °C	GOST 6651-2009
Cu53	0,00426	-50+200 °C	0,25	0,1 °C	GOST 6651-2009
Cu100	0,00426	-50+200 °C	0,25	0,1 °C	GOST 6651-2009
Cu500	0,00426	-50+200 °C	0,25	0,1 °C	GOST 6651-2009
Cu1000	0,00426	-50+200 °C	0,25	0,1 °C	GOST 6651-2009
50M	0,00428	-180+200 °C	0,25	0,1 °C	GOST 6651-2009
100M	0,00428	-180+200 °C	0,25	0,1 °C	GOST 6651-2009
500M	0,00428	-180+200 °C	0,25	0,1 °C	GOST 6651-2009
1000M	0,00428	-180+200 °C	0,25	0,1 °C	GOST 6651-2009
Ni100	0,00617	-60+180 °C	0,25	0,1 °C	GOST 6651-2009
Ni500	0,00617	-60+180 °C	0,25	0,1 °C	GOST 6651-2009
Ni1000	0,00617	-60+180 °C	0,25	0,1 °C	GOST 6651-2009
		•	ТС		
J	_	–210+1200 °C	0,5	0,1 °C	IEC 60584-1:2013
N	_	–270+1300 °C	0,5	0,1 °C	IEC 60584-1:2013
K	_	–270+1360 °C	0,5	0,1 °C	IEC 60584-1:2013
S	_	–50+1750 °C	0,5	0,1 °C	IEC 60584-1:2013
R	_	−50+1750 °C	0,5	0,1 °C	IEC 60584-1:2013
T	_	–270…+ 400 °C	0,5	0,1 °C	IEC 60584-1:2013
В	_	+200+1800 °C	0,5	0,1 °C	IEC 60584-1:2013
L (DIN)	_	0100 %	0,75	0,1 °C	DIN 43710
A-1	_	0+ 2500 °C	0,5	0,1 °C	IEC 60584-1:2013
A-2	_	0+1800 °C	0,5	0,1 °C	GOST 8.585-2013
A-3	_	0+1800 °C	0,5	0,1 °C	GOST 8.585-2013
L (GOST)	_	−200+800 °C	0,5	0,1 °C	GOST 8.585-2013
		Lineard	e Signale		
0-5 mA	_	0100 %	0,25	0,1 %	IEC 60381-1:1985
0-20 mA	_	0100 %	0,25	0,1 %	_
4-20 mA	_	0100 %	0,25	0,1 %	_
-50+50 mV	_	0100 %	0,25	0,1 %	IEC 60381-1:1985
-1+1 V	_	0100 %	0,25	0,1 %	_
0-2000 Ω	_	0100%	0,25	1 Ω	_
0-5000 Ω	_	0100%	0,25	1 Ω	_
		Digital	e Signale		
Schaltkontakt	_	_	_	_	

3.2 Betriebsbedingungen

Das Gerät ist für die selbstständige Konvektionskühlung ausgelegt. Dies ist bei der Auswahl des Installationsortes zu beachten.

Die folgenden Umgebungsbedingungen müssen beachtet werden:

- staubarme, trockene und kontrollierte Umgebung
- geschlossene explosionsgeschützte Räume ohne aggressive Dämpfe und Gase

Tabelle 3.3 Beriebsbedingungen

Bedingung	Zulässiger Bereich
Bertriebstemperatur	-40+55 °C

Bedingung	Zulässiger Bereich
Transport und Lagerung	
Luftfeuchtigkeit	bis 95 % (at +35 °C, nicht kondensierend)
Höhelage	bis 2000 m über NN
Schutzart	IP20
Vibrations- / Stoßfestigkeit	nach IEC 61131-2
EMV-Emission / Störfestigkeit	nach IEC 61131-2

4 Konfiguration und Betrieb

Die Geräteparameter können mit akYtecToolPro oder auf Befehl eines Netzwerk-Masters eingestellt werden.

Die vollständige Parameterliste finden Sie im Anhang D. Sie können sie auch in akYtecToolPro über das Symbolleistensymbol *Parameterliste* vom Gerät auslesen.

Die Module der Mx210-Serie haben die folgenden Parametergruppen:

- Echtzeituhr (Kap. 4.2)
- Batterie (Kap. 4.3)
- Netzwerk (Kap. 4.4)
- Modbus Slave (Kap. 4.5)
- Gerätezustand (Kap. 4.6)
- Datenerfassung (Kap. 4.7)
- E/A-Gruppen, modellabhängig (Kap. 4.8, 4.9)

4.1 Verbindung mit akYtecToolPro

Die Verbindung mit akYtecToolPro auf dem PC kann über die Schnittstellen USB (Kap. 4.1.1) oder Ethernet (Kap. 4.1.2) hergestellt werden.

Für die Konfiguration über Ethernet muss das Gerät mit Strom versorgt werden. Bei der Konfiguration über USB wird das Gerät über USB mit Strom versorgt und die Hauptstromversorgung ist nicht erforderlich.

4.1.1 Verbindung über USB

ACHTUNG

Das Gerät muss ausgeschaltet sein, bevor eine Verbindung zum PC über USB hergestellt wird.

ACHTUNG

Wen das Gerät über USB mit Strom versorgt wird, sind Ein- und Ausgänge sowie die Ethernet-Schnittstellen deaktiviert. Wenn Sie die volle Kontrolle über das Gerät benötigen, müssen Sie die Hauptstromversorgung anschließen, aber Folgendes beachten:

Es gibt keine galvanische Trennung zwischen digitalen Eingängen und USB-Schnittstelle. An diese Stromkreise angeschlossene Geräte müssen das gleiche Erdungspotential haben oder galvanisch getrennt sein, um Schäden am Gerät zu vermeiden.

Um das Modul über USB zu konfigurieren:

- 1. Verbinden Sie den Micro-USB-Programmieranschluss des Geräts (Abb. 2.2. Pos. 6) über ein USB-zu-Micro-USB-Verbindungskabel (nicht mitgeliefert) mit dem PC.
- 2. Starten Sie akYtecToolPro.
- 4. Wählen Sie im geöffneten Dialog die Schnittstelle STMicroelectronics Virtual COM Port aus.
- 5. Wählen Sie das Protokoll akYtec Autodetection Protocol.
- 6. Wählen Sie Gerät finden.
- 7. Geben Sie die Geräteadresse ein (Werkseinstellung: 1) und klicken Sie auf Suchen.
- 8. Wenn das richtige Gerät gefunden wurde, wählen Sie es aus und klicken Sie auf die Schaltfläche **Geräte hinzufügen**, um das Gerät zum Projekt hinzuzufügen.
- 9. Wenn das Gerät passwortgeschützt ist, geben Sie das richtige Passwort ein.

Wenn Sie das Passwort vergessen haben, stellen Sie die Werkseinstellungen wieder her (Kap. 6)

4.1.2 Verbindung über Ethernet

Um das Modul über Ethernet zu konfigurieren:

- Verbinden Sie den Ethernet-Anschluss des Geräts über das Ethernet-Verbindungskabel (nicht im Lieferumfang enthalten) mit dem PC.
- Schließen Sie das Netzkabel an den abnehmbaren 2-poligen Klemmenblock an und stecken Sie es in das Gerät.
- 3. Schalten Sie die Stromversorgung des Geräts ein.
- 4. Starten Sie akYtecToolPro.
- 6. Im geöffneten Dialog wählen Sie die Schnittstelle Ethernet.
- 7. Wählen Sie Gerät finden.
- 8. Geben Sie die IP-Adresse ein (Werkseinstellung: 192.168.1.99) und klicken Sie auf Suchen
- 9. Wenn das richtige Gerät gefunden wurde, wählen Sie es aus und klicken Sie auf die Schaltfläche **Geräte hinzufügen**, um das Gerät zum Projekt hinzuzufügen.
- 10. Wenn das Gerät passwortgeschützt ist, geben Sie das richtige Passwort ein.

Wenn Sie das Passwort vergessen haben, stellen die Werkseinstellung wieder her (Kap. 6).

4.2 Echtzeituhr

Das Modul verfügt über eine Echtzeituhr (RTC) mit einer Pufferbatterie (Kap. 4.3). Die RTC-Zeit wird ab dem 01.01.2000, 00:00 Uhr in Sekunden als UTC gezählt.

Zum Einstellen der Uhrzeit, klicken Sie auf das Symbolleistensymbol *Echtzeituhr* (Abb. 4.1). Verwenden Sie die Schaltfläche *Synchronisieren mit PC*, um die RTC mit der PC-Uhr zu synchronisieren.

Wählen Sie Ihre Zeitzone aus der Dropdown-Liste unten. Sie können die Zeitzone auch im Bereich von -720...+840 min. mit dem Schritt 60 min. in der Parametergruppe *Echtzeituhr* einstellen. Verwenden Sie die Schaltfläche *Speichern*, um die Parameter im Gerätespeicher zu speichern.

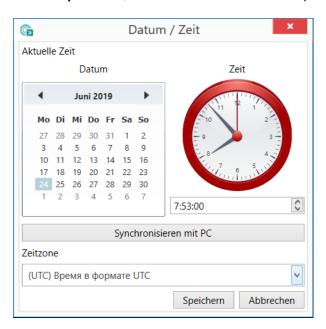


Abb. 4.1 Echtzeituhr-Parameter

Die Echtzeituhr wird zur Berechnung des Zeitstempels bei Messung (Kap. 4.8.5) und des Parameters **Zeit (ms)** verwendet.

Zeit (ms) ist eine zyklische Zeit in Millisekunden, die mit dem Einschalten des Geräts beginnt und mit dem Ausschalten endet. Er wird am Ende des Zyklus (4294967295 ms) auf null zurückgesetzt. Der Parameter wird für Gerätediagnosezwecke verwendet.

Um die RTC-Zeit über das Modbus-Netzwerk einzustellen, gehen Sie wie folgt vor:

1. Schreiben Sie die neue Zeit in den Parameter Neue Zeit

- Setzen Sie den Parameter Neue Zeit anwenden = 1 und halten Sie den Wert mindestens 1 Sekunde lang.
- Setzen Sie den Parameter Neue Zeit anwenden = 0 und halten Sie den Wert mindestens 1 Sekunde lang.

Der Zeitwert kann nicht öfter als einmal pro Sekunde geändert werden.

4.3 Batterie

Die RTC wird mit der Versorgungsspannung versorgt. Wenn das Gerät ausgeschaltet ist, wird RTC von einer austauschbaren Batterie des Typs CR2032 gespeist.

Eine vollgeladene Batterie kann die Echtzeituhr 5 Jahre lang mit Strom versorgen. Bei Temperaturen nahe den zulässigen Grenzen (Tab. 3.2) verkürzt sich die Batterielebensdauer. Der Parameter Spannung in der Gruppe Batterie zeigt die Batteriespannung in mV an.

Dieser Parameter wird jedes Mal nach dem Einschalten und dann alle 12 Stunden abgefragt. Ersetzen Sie die Batterie, wenn mindestens eines der folgenden Ereignisse aufgetreten ist:

- Der LED-Indikator
 \(\Delta\) leuchtet f\(\text{ir} \) 0.2 s mit einer Periode von 2 s auf, was bedeutet, dass U_B ≤ 2 V und die Batterie so schnell wie möglich ausgetauscht werden muss, die RTC jedoch noch etwa 2 Wochen ohne Stromversorgung arbeiten kann.
- Die Batterie wurde vor 6 Jahren das letzte Mal ausgetauscht.

Informationen zum Batteriewechsel finden Sie im Anh. C.

HINWEIS

Bei einer Batteriespannung von weniger als 1,6 V werden die Konfigurationsparameter in das batteriegepufferte RAM geschrieben und anschließend in den Flash-Speicher übertragen. Das Aufzeichnungsintervall ist abhängig von der Auslastung des Modulprozessors (mindestens 2 Minuten).

Da die Anzahl der Löschzyklen von Flash-Speicher begrenzt ist, wird es nicht empfohlen, bei schwacher Batterie die Konfigurationsparameter zyklisch aufzuzeichnen.

4.4 Ethernet

Öffnen Sie zum Konfigurieren der Ethernet-Schnittstelle den Knoten **Netzwerk > Ethernet** im Parameterbaum.

Tabelle 4.1 Ethernet-Parameter

Parameter	Beschreibung	Standardwert	Zugriff
IP-Adresse	IPv4 Internetprotokolladresse	192.168.1.99	R
Subnetzmaske	IP-Adresserkennungsbereich im Subnetz	255.255.255.0	R
Gateway	IP-Adresse des Gateways	192.1628.1.1	R
DNS-Server 1	Primärer DNS-Server	77.88.8.8	RW
DNS-Server 2	Sekundärer DNS-Server	8.88.8	RW
Neue IP-Adresse	Neuen Wert eingeben	_	RW
Neue Subnetzmaske	Neuen Wert eingeben	_	RW
Neues Gateway	Neuen Wert eingeben	_	RW
DHCP	Ein / Aus / Service-Taste	Service-Taste	RW

Die Ethernet-Parameter können eingestellt werden mit:

- nur Symbolleiste
- Service-Taste am Gerät (empfohlen, wenn Sie mehrere Geräte gleichzeitig konfigurieren müssen) (Kap. 4.4.1.)

Um die Ethernet-Parameter über die Symbolleiste zu ändern:

- 1. Geben Sie neue Werte für die Parameter Neue IP-Adresse, Neue Subnetzmaske und Neues Gateway ein.
- 2. Setzen Sie den Parameter DHCP auf Aus.
- 3. Klicken Sie auf das Symbolleistensymbol Parameter schreiben 👱
- 4. Klicken Sie auf das Symbolleistensymbol Gerät neustarten 🔍

5. Wenn Sie die neuen Parameter überprüfen oder das Gerät weiter konfigurieren möchten, müssen Sie es mit den neuen Netzwerkparametern erneut zum Projekt hinzufügen.

Wenn eine dynamische IP-Adresse erforderlich ist (z. B. um einen Cloud-Dienst zu verwenden), setzen Sie **DHCP** auf **Ein**.

4.4.1 Einstellungen der Netzwerkparameter mit Service-Taste

Wenn Sie IP-Adressen für mehrere Module zuweisen müssen, ist es bequemer, Service-Tasten an Geräten zu verwenden (Abb. 2.2, Pos. 7). Zuvor müssen alle Module über Ethernet mit dem PC verbunden werden.

Um die Ethernet-Parameter mithilfe von Service-Tasten zu ändern:

- 1. Schließen Sie alle Module in Serie an den PC über zwei Ethernet-Ports (Abb. 2.3, Pos. 2).
- 2. Schalten Sie die Module ein.
- 3. Starten Sie akYtecToolPro.
- 4. Stellen Sie den Parameter **DHCP** auf allen Modulen auf **Service-Taste**.
- 5. Klicken Sie auf das Symbolleistensymbol **IP-Adressen** $^{\mid p \mid}$.
- 6. Legen Sie die IP-Adresse für das erste Modul aus der Gruppe fest.
- 7. Drücken Sie nacheinander die Service-Tasten an den Modulen und überprüfen Sie das Ergebnis im Dialogfeld. Dort wird angezeigt, auf welchem Modul die Taste gedrückt wurde. Die angegebene statische IP-Adresse und andere Netzwerkparameter, falls geändert wurden, werden diesem Modul zugewiesen. Für jedes nachfolgende Gerät wird die Adresse automatisch um 1 erhöht.

Es werden nur die Ethernet-Parameter geändert, andere Parameter werden nicht beeinflusst. Wenn Sie die IP-Adresse vergessen haben, können Sie sie im akYtec Tool Pro finden, indem Sie das Modul über USB an Ihren Computer anschließen.

4.5 Modbus Slave

Das Modul kann in einem Modbus TCP-Netzwerk als Slave betrieben werden, indem der Port 502 und die Standardadresse 1 verwendet werden. Die Adresse kann in der Gruppe **Modbus Slave** geändert werden (Tab. 4.2).

Das Gerät kann maximal 4 Modbus TCP-Verbindungen verarbeiten.

Einzelheiten zur Arbeit mit Modbus-Protokoll finden Sie in Anhang D.

Für Modbus-Protokollspezifikationen siehe Modbus specifications.

Tabelle 4.2 Modbus Slave-Parameter

Parameter	Beschreibung	Bereich	Standardwert	Zugriff
Slave-Adresse	Geräteadresse in einem Modbus- Netzwerk	1254	1	RW
Timeout	Aktivierungsverzögerung des sicheren Zustands der Ausgänge nach Kommunikationsunterbrechung (Kap. 4.9.1)	060 s	30	RW

4.6 Gerätezustand

Die Parameter des Gerätezustands befinden sich in der Gruppe *Gerätezustand* im Parameterbaum.

Tabelle 4.3 Gerätezustand-Parameter

Parameter	Beschreibung	Bereich	Standardwert	Zugriff
Aktualisie- rungsperiode	Zeitintervall für die Zustandsaktualisierung	160 s	5	RW
Zustand	32-Bit-Zustands-Code	04294967295	_	R

4.7 Datenerfassung

Ein Archiv wird als Satz verschlüsselter Protokolldateien gespeichert. Eine Protokolldatei besteht aus einer Reihe von Datensätzen, die durch Zeilenumbruchzeichen (0x0A0D) getrennt sind. Jeder Datensatz entspricht einem Parameter und besteht aus Feldern getrennt durch Semikolon. Das Format des Datensatzes ist in Tab. 4.4 beschrieben.

Tabelle 4.4 Datensatzformat

Feld	Тур	Größe	Kommentar
Zeit	binär	4 Byte	In Sekunden, ab 01/01/2000, 00:00 (UTC+0)
Trennzeichen	String	1 Byte	Semikolon (;)
UID (Parameter-ID)	String	8 Byte	Zeichenfolge von HEX-Zeichen mit führenden Nullen
Trennzeichen	String	1 Byte	Semikolon (;)
Parameterwert	String	parame- terabhän- gig	Zeichenfolge von HEX-Zeichen mit führenden Nullen
Trennzeichen	String	1 Byte	Semikolon (;)
Parameterstatus	binär	1 Byte	1 – Wert korrekt0 – Wert inkorrekt, Weiterbearbeitung nicht empfohlen
Zeilenumbruch	binär	2 Bytes	0x0A0D

Protokolldateien werden in einem integrierten Flash-Speicher gespeichert, der als Dateisystem mit Verschlüsselung formatiert ist. Informationen zum Flash-Speicher finden Sie im Abschnitt "Flash-Speicher" in Tabelle 3.1.

Bei einem Archivüberlauf, überschreibt der neue Eintrag den ältesten Eintrag im Archiv.

Die Archivierungsparameter sind in Tab. 4.5 beschrieben.

Um alle protokollierten Parameter in akYtecToolPro anzuzeigen, verwenden Sie das Symbolleistensymbol *Geräteinformationen*.

Das Archiv kann über Modbus TCP mit der Funktion 20 (Tab. D.3) gelesen werden. Mit dieser Funktion können in einer Anfrage eine oder mehrere Datensätze aus einer oder mehreren Dateien zu lesen. Über Einzelheiten zur Funktionsverwendung siehe <u>Modbus specifications</u>.

Die Dateinummer in der Modbus-Anforderung sollte als Datei-ID + 4096 berechnet werden. Die Dateiindizierung beginnt mit Null. Der Parameter *Letzte Logdatei-ID* enthält die ID der Archivdatei, in die die Daten zuletzt geschrieben wurden.

Die Zeitzone ist nicht in der Datei enthalten, kann aber aus dem Parameter **Zeitzone** (Tab. D.1) abgelesen werden.

Tabelle 4.5 Archivierungsparameter

Parameter	Beschreibung	Bereich	Standardwert	Zugriff
Datenerfas- sungsintervall	Zeitintervall, in dem die Werte der ausgewählten Parameter aufgezeichnet werden	103600 s	30	RW
Anzahl der Dateien	Maximale Anzahl von Archivdateien	10300	100	RW
Dateigröße	Protokolldateigröße in Bytes	2002048	2048	RW
Letzte Logdatei-ID	ID der zuletzt geschrieben Datei	065535	_	R

4.8 Analogeingänge

Um die Digitaleingänge zu konfigurieren, öffnen Sie die Gruppe *Analogeingänge* im Parameterbaum.

Tabelle 4.6 Al-Parameter

Parameter	Beschreibung	Bereich	Standardwert	Zugriff		
	Gruppe					
CJC	Vergleichsstellen-Kompensation - Option für Thermoelemente (Abschn. 4.8.7)	Ein / Aus	Ein	RW		
Maximale Abtastrate	Ein – Die Abtastzeit wird auf das für das ausgewählte	Ein / Aus	Ein	RW		

Parameter	Beschreibung	Bereich	Standardwert	Zugriff
	Gruppe			
	Eingangssignal mögliche Minimum eingestellt (Abschn. 4.8.1)			
Vergleisstelle 1	Temperatur des Vergleichsstellen- Sensors 1	_	<u> </u>	R
Vergleisstelle 2	Temperatur des Vergleichsstellen- Sensors 2	_	_	R
Vergleisstelle 3	Temperatur des Vergleichsstellen- Sensors 3	_	_	R
	Einzeln			
Eingangssignal	Auswahl des Eingangssignals (Abschn. 4.8.1). Aus – Eingang von der Abfrage ausgeschlossen	List	Schaltkontakt	RW
Kurvenoffset	Offsetkorrektur der Sensorkennlinie (Abschn. 4.8.4)	-1000010000	0	RW
Kurvensteigung	Steigungskorrektur der Sensorkennlinie (Abschn. 4.8.4)	-110	_	RW
Obere	Maximaler Pegel des	-1000010000	1	RW
Messgrenze	Eingangssignals (Abschn. 4.8.2)	-1000010000	ı	IZVV
Untere Messgrenze	Minimaler Pegel des Eingangssignals (Abschn. 4.8.2)	-1000010000	0	RW
Abtastzeit	Eingangsabfrageintervall (Abschn. 4.8.1)	60010000 ms	3000	RW
Filterbandbreite	Eingangsfilter-Bandbreite in Messeinheiten (Abschn. 4.8.3)	0100	10	RW
Dezimalpunkt- Offset	AIn INT = AIn REAL * 10 ^{DP} (Abschn. 4.8.5)	07	0	RW
Filterzeitkon- stante	Filterzeitkonstante (Abschn. 4.8.3) 0 - Filter deaktiviert	065535	3	RW
AIn REAL	Messwert im Eingang Aln als REAL32 (Abschn. 4.8.5)	REAL32	_	R
Aln Zeitstempel	Zeitstempel im Eingang Aln als INT16 (Abschn. 4.8.5)	065535 s/100		R
Aln INT	Messwert im Eingang Aln als INT16 (Abschn. 4.8.5)	-3276832767	_	R

4.8.1 Eingans-Abfrage

Solange der Parameter *Eingangssignal* auf *Aus* gesetzt ist, wird der Eingang von der Abfrageliste ausgestrichen. Nur wenn eines der Signale ausgewählt ist, wird der Eingang in die Abfrageliste aufgenommen.

Der Parameter **Abtastzeit** kann für jeden Eingang separat im Bereich von 0,6...10 Sekunden eingestellt werden. Wenn der Eingang nicht mit dem angegebenen Zeitintervall abgefragt werden kann (z.B. wenn der Parameter für jeden der 8 Eingänge auf 0,6 Sekunden eingestellt ist, beträgt das gesamte Abfrageintervall ca. 4,8 s), wird das Abfrageintervall auf möglich kürzeste erhöht. Wenn die Option **Maximale Abtastrate** aktiviert ist (**Ein**), wird das Abfrageintervall automatisch auf das für das ausgewählte Eingangssignal mögliche Minimum eingestellt und der Parameter **Abtastzeit** wird ignoriert.

4.8.2 Signalskalierung

Wenn ein lineares Eingangssignal ausgewählt ist, kann es mit den Parametern *Untere Messgrenze* und *Obere Messgrenze* entsprechend den Messgrenzen des angeschlossenen Sensors skaliert werden. Somit kann es in Maßeinheiten umgerechnet werden.

Beispiel:

Wenn Sie einen Sensor mit einem Ausgangssignal von 4-20 mA verwenden, der den Druck im Bereich von 0...25 atm kontrolliert, stellen Sie den *Untere Messgrenze* auf 00,00 und den *Obere Messgrenze* auf 25,00 ein. Anschließend werden die Messwerte in Atmosphären verarbeitet und angezeigt.

4.8.3 Signalfilterung

Zum Schutz vor elektromagnetischen Störungen ist das Modul mit einem digitalen Tiefpassfilter ausgestattet. Die digitale Filterung erfolgt in zwei Schritten.

1. In der ersten Stufe werden die ausgeprägten "Einbrüche" und "Überschwinger" aus dem Nutzsignal herausgefiltert. Die Differenz zwischen den letzten beiden Messungen wird mit dem Parameter *Filterbandbreite* verglichen. Wenn die Differenz die Bandbreite überschreitet, wird die Messung mit der doppelten Bandbreite wiederholt. Wenn die neue Messung die Richtigkeit der vorherigen bestätigt, wird das Ergebnis als neuer stabiler Zustand verwendet, auf den die auf den eingestellten Wert reduzierte Bandbreite angewendet wird. Wenn nicht, wird das Ergebnis verworfen. Dieser Algorithmus schützt den Eingang vor Einzelimpulsstörungen, die von Industrieanlagen häufig erzeugt werden.

Der Parameter *Filterbandbreite* wird für jeden Eingang einzeln in Maßeinheiten angegeben. Das Verringern der Bandbreite verbessert die Störfestigkeit des Eingangs, führt jedoch zu einer langsameren Reaktion auf schnelle Änderungen des Eingangssignals. Wenn der Interferenzpegel niedrig ist oder wenn Sie mit sich schnell ändernden Prozessen arbeiten, wird empfohlen, die Filterbandbreite zu erhöhen oder die Filterstufe zu deaktivieren, indem Sie den Parameter auf 0 setzen.

Wenn Sie unter Bedingungen starker Interferenzen arbeiten, wird empfohlen, die Bandbreite zu verringern, um deren Einfluss auf den Betrieb des Moduls zu beseitigen.

2. In der zweiten Stufe der Filterung wird das Signal geglättet (gedämpft), um elektromagnetische Rauschkomponenten zu eliminieren. Der Hauptparameter des Dämpfungsfilters ist der Parameter *Filterzeitkonstante*. Die Filterung erfolgt nach der Formel:

$$S = S_n * T + S_{n-1} * (1 - T)$$

wo

S – gespeicherter Signalwert

S_n – Signalwert gemessen bei der letzten Abfrage

S_{n-1} – Signalwert gemessen bei der vorherigen Abfrage

T - Dämpfungsfaktor

$$T = 1/(\frac{K}{10} + 1)$$

wo

K – Filterzeitkonstante

Die *Filterzeitkonstante* wird für jeden Eingang in Sekunden eingestellt. Das Erhöhen der Filterkonstante verbessert die Störfestigkeit des Eingangs, erhöht jedoch gleichzeitig seine Trägheit, d. H. Verlangsamt die Reaktion auf schnelle Änderungen des Eingangssignals. Die zweite Filterstufe kann deaktiviert werden, indem der Parameter auf 0 gesetzt wird.

4.8.4 Sensorkurvenkorrektur

Die Kennlinie des Sensors kann mit zwei Parametern *Kurvenoffset* und *Kurvensteigung* korrigiert werden.

Der Kurvenoffset kann in den folgenden Fällen angewendet werden:

- um den RTD-Zuleitungswiderstand bei einem Zweidrahtanschluss zu kompensieren
- um die Drift desR₀-Punktes eines Thermoelements zu kompensieren

Die *Kurvensteigung* kann verwendet werden, um die Fehler der Sensoren selbst oder die Ungenauigkeit des Shunt-Widerstandes zu kompensieren. Der Parameter *Kurvensteigung* wird in dimensionslosen Einheiten im Bereich von 1...10 eingestellt.

4.8.5 Signalskalierung

Wenn ein lineares Eingangssignal ausgewählt ist, kann es mit den Parametern *Untere Messgrenze* und *Obere Messgrenze* entsprechend den Messgrenzen des angeschlossenen Sensors skaliert werden. Somit kann es in Maßeinheiten umgerechnet werden.

Beispiel:

Wenn Sie einen Sensor mit einem Ausgangssignal von 4-20 mA verwenden, der den Druck im Bereich von 0...25 atm kontrolliert, stellen Sie den *Untere Messgrenze* auf 00,00 und den *Obere*

Messgrenze auf 25,00 ein. Anschließend werden die Messwerte in Atmosphären verarbeitet und angezeigt.

4.8.6 Eingangsmesswerte

Die Messergebnisse der Eingangssignale werden in zwei Formaten dargestellt (Tab. 4.6):

AIn REAL – 4-Byte-Gleitkommawert

AIn INT - 2-Byte-Integer-Wert

WC

AIn INT = AIn REAL * 10 DP

DP – **Dezimalpunkt-Offset** angegeben im Bereich 0...7.

HINWEIS Das Fins

Das Einstellen des "Dezimalpunkt-Offset" auf 6 oder 7 kann dazu führen, dass der Wert "Aln INT" den Bereich -32768… 32767 (oder 0… 65535 für vorzeichenlose Darstellung) überschreitet und nicht im INT16-Format gespeichert werden kann. Dies sollte bei der Einstellung des Werts "Dezimalpunkt-Offset" berücksichtigt werden.

Aln Zeitstempel ist eine zyklische Zeit mit dem Schritt von 0,01 Sekunden, die in zwei Bytes gespeichert ist. Die Zeitzählung beginnt mit der ersten Messung und wird alle 65536 Schritte, d. H. 655,36 Sekunden, auf Null zurückgesetzt. Es markiert den Zeitpunkt der Messung im Kanal. Bei Verwendung des Zeitstempels müssen Sie die Ethernet-Übertragungsverzögerung nicht berücksichtigen (z. B. bei der Berechnung der Ableitungszeit im PID-Regler). Die Messwerte werden in ihren jeweiligen Speicherregistern gespeichert (Tab. D.1) und können mit den Modbus-Funktionen 3 (0x03) oder 4 (0x04) gelesen werden.

4.8.7 Sensordiagnose

Das Modul überwacht den Betrieb der an seine Eingänge angeschlossenen Sensoren. Wenn eine Fehlfunktion erkannt wird, sendet das Modul eine Fehlermeldung über Ethernet. Häufige Fehlerfälle:

- Alle Sensortypen die Messwerte liegen außerhalb des zulässigen Bereichs
- RTD- oder TC-Sensorbruch
- RTD-Kurzschluss
- Vergleichsstellen-Temperatur liegt außerhalb des Bereichs von -40...+90 °C.

Einige Senderfehler können nicht erkannt werden:

- Strom- und Spannungs-Sensorbruch. Der Messkanal zeigt einen Nullwert oder den Fehler "Messwert zu niedrig" an.
- Aufgrund der implementierten Diagnose eines Thermoelement-Kurzschlusses werden Widerstandssignale unter 25 Ω als ungültig betrachtet. Deswegen kann mit dem Widerstandssensor 0...2 k Ω keine Signale im Bereich von 0...25 Ω (0...1,26 % des Messbereichs) gemessen werden.

Im Falle eines Eingangsfehlers wird der Fehlercode im höchstwertigen Byte des entsprechenden **Aln REAL**-Registers anstelle des Messwertes geschrieben.

Tabelle 4.7 Eingangsdiagnosefehler

Fehler- code	Beschreibung	Eingansanzei- ge
0xF0	Inkorrekter Wert	orange
0xF6	Daten nicht bereit. Warten Sie auf die Ergebnisse der ersten Messung nach dem Einschalten	orange
0xF7	Eingang deaktiviert (Aus)	aus
0XF8	Vergleichstellen-Temperatur zu hoch	orange
0XF9	Vergleichstellen-Temperatur zu niedrig	orange
0xFA	Messwert zu hoch	orange
0xFB	Messwert zu niedrig	orange
0xFC	Sensorkurzschluss	red
0xFD	Sensorbruch	red
0xFE	Keine Verbindung mit ADC	red
0xFF	Falscher Kalibrierungskoeffizient	orange

4.8.8 Vergleichsstellenkompensation

Die Eingangsschaltung bietet eine optionale Korrektur der Messwerte für Thermoelemente mit Hilfe der Vergleichsstellen-Temperaturkompensation (CJC).

Die Vergleichsstellen-Temperatur wird von drei integrierten Sensoren gemessen. Die Option ist standardmäßig aktiv. Sie kann deaktiviert werden, indem der Parameter *CJC* auf *Aus* gesetzt wird.

4.9 NTP-Protokoll

Das Modul unterstützt die Synchronisation der RTC mit einem NTP-Server v4. Öffnen Sie die *NTP*-Gruppe, um die NTP-Parameter zu konfigurieren.

Tabelle 4.8 NTP-Parameter

Parameter	Beschreibung	Bereich	Standard- wert	Zu- griff
Aktivieren	NTP-Verbindung aktivieren	Ein / Aus	Aus	RW
NTP Server Pool	IP oder URL des NTP-Pools. Wenn sich der Server in einem externen Netzwerk befindet, überprüfen Sie die korrekten Werte für die Parameter Gateway und DNS (Gruppe Network)	-	pool.ntp.org	RW
NTP Server 1	IP oder URL des primären NTP-Servers	_	192.168.1.1	RW
NTP Server 2	IP oder URL des sekundären NTP- Servers		192.168.1.2	RW
Synchronisie- rungsperiode	Zeitsynchronisationszeit in Sekunden. Stellen Sie sicher, dass der eingestellte Wert nicht unter dem Mindestwert für den ausgewählten NTP-Server liegt.	565535 s	5	RW
Zustand	Serververbindungszustand	_	_	R

Alle angegebenen NTP-Server (einschließlich Server aus dem Pool) haben die gleiche Abfragepriorität.

Weitere Informationen finden Sie im Dokument: <u>NTP_MQTT_SNMP_protocols</u>.

4.10 MQTT-Protokoll

4.10.1 Grundlagen

Das MQTT-Protokoll definiert zwei Arten von Netzwerkeinheiten: einen Nachrichten-**Broker** und eine Anzahl von **Clients**. Broker ist ein Server, der alle Nachrichten von den Clients empfängt und die Nachrichten dann an die entsprechenden Zielclients weiterleitet. Der Kunde kann Herausgeber (**publisher**) oder / und Abonnent (**subscriber**) sein.

Veröffentlichte Nachrichten sind in einer Hierarchie von Themen (*topics*) organisiert. Wenn ein Publisher neue Daten zu verteilen hat, sendet er eine Nachricht mit den Daten an den verbundenen Broker. Der Broker verteilt die Nachricht an alle Kunden, die dieses Topic abonniert haben. Ein Topic ist eine UTF-8-codierte Zeichenfolge, mit der der Broker Nachrichten für jeden verbundenen Client filtert. Das Topic besteht aus einer oder mehreren Themenebenen (*topic levels*). Jede Themenebene wird durch einen Schrägstrich (Ebenen-Trennzeichen) getrennt. Wenn ein Client ein Topic abonniert, kann er das genaue Topic einer veröffentlichten Nachricht abonnieren oder Wildcard (Platzhalter) verwenden, um mehrere Topics gleichzeitig zu abonnieren. Es gibt zwei Arten von Wildcard-Symbolen: *single-level* (+) und *multi-level* (#) (siehe **Beispiel**).

4.10.2 Implementierung

Das Modul unterstützt das MQTT-Protokoll (v3.1.1) und kann als Client verwendet werden. Es kann Informationen über den Status seiner Ein- und Ausgänge veröffentlichen und Topics abonnieren, die seine Ausgänge steuern.

Um die MQTT-Parameter zu konfigurieren, öffnen Sie die Gruppe MQTT im Parameterbaum.

HINWEIS Bei Verw

Bei Verwendung des MQTT-Protokolls wird empfohlen, den Parameter "Timeout des sicheren Zustands" (Gruppe "Modbus Slave") auf 0 zu setzen, da das Schreiben in der Regel ereignisgesteuert und in diesem Fall nicht zyklisch ist.

Tabelle 4.9 MQTT-Parameter

Parameter	Beschreibung	Bereich	Standardwert	Zugriff
Anwesenheits- erkennung. Aktivieren	Wenn <i>Ein</i> , veröffentlicht das Modul nach dem Einschalten die Meldung "Online" zu dem im Parameter <i>Topic-Name</i> angegebenen Topic. Wenn vom Modul keine Nachrichten empfangen werden, veröffentlicht der Broker in diesem Topic eine "Offline" -Nachricht.	Ein / Aus	Aus	RW
Anwesenheits- erkennung. Topic-Name	Topic-Name zur Anwesenheitserkennung	_	MQTT status	RW
Anschluss an Broker	Auf <i>Ein</i> setzen, um eine Verbindung herzustellen	Ein / Aus	Aus	RW
Benutzername			RW	
Passwort	Geräteauthentifizierung auf der Brokerseite verwendet. Die Authentifizierung wird nicht verwendet, wenn die Werte nicht angegeben sind.	_	_	RW
Gerätename	Gerätename, der im Topic-Name verwendet wird (siehe Beispiel)	_	_	RW
Broker-Adresse	Broker-IP oder -URL. Wenn sich der Broker in einem externen Netzwerk befindet, überprüfen Sie die korrekten Werte für die Parameter <i>Gateway</i> und <i>DNS</i> (Gruppe <i>Netzwerk</i>).	_	_	RW
Port	Port für Broker	065535	1883	RW
Letzte Nachricht speichern	Wenn <i>Ein</i> , erhalten andere Clients, die die Topics des Moduls abonniert haben, die neuesten Nachrichten zu diesen Topics.	Ein / Aus	Aus	RW
Veröffentlich- ungsintervall	Veröffentlichungsintervall in Sekunden	5600	10	RW
Servicequalität	QoS0 – höchstens einmal QoS1 – wenigstens einmal QoS2 – genau einmal	QoS0 / QoS1 / QoS2	QoS0	RW
Keep Alive Intervall	Keep Alive interval in seconds	0600	0	RW
Zustand	Broker-Verbindungszustand		_	R

Tabelle 4.10 Topics

Parameter	Topic	Knoten	Funktion	Format
Eingans-Bitmaske	MASK	DI	GET	UINT
Zählerwert	COUNTER	DI1DI6	GET	UINT
Neue Ausgans-Bitmaske	MASK	DO	SET	UINT
Ausgangs-Bitmaske	STATE	DO	GET	UINT
Diagnostik- Bistmaske**	DIAGNOSTICS	DO	GET	UINT

^{* -} Only for MK210-312.

Beispiel:

Gerät – der Name des in akYtecToolPro angegebenen Geräts

1. Al1-Messwert lesen

MX210/Gerät/GET/AI1/VALUE

Erhaltener Wert: Messwert an Eingang 1

2. Verwendung von Single-Level-Platzhalter

MX210/Gerät/GET/+/VALUE

Erhaltener Wert: Messwerte aller Analogeingänge. Das Topic entspricht einer Gruppe von Topics:

MX210/Gerät/GET/AI1/VALUE

MX210/Gerät/GET/AI2/VALUE

MX210/Gerät/GET/.../VALUE

MX210/Gerät/GET/AI8/VALUE

3. Verwendung von Multi-Level-Platzhalter

MX210/Gerät/GET/#

Erhaltener Wert: Messwerte aller Analogeingänge. Das Topic entspricht einer Gruppe von Topics:

MX210/Gerät/GET/AI1/VALUE

MX210/Gerät/GET/AI2/VALUE

MX210/Gerät/GET/AI3/VALUE

MX210/Gerät/GET/.../VALUE

MX210/Gerät/GET/AI8/VALUE

Weitere Informationen finden Sie im Dokument: <u>NTP_MQTT_SNMP_protocols</u>.

4.11 SNMP-Protokoll

4.11.1 Grundlagen

Das Protokoll basiert auf der Client / Server-Architektur, bei der Clients als Manager (*managers*) und Server als Agenten (*agents*) bezeichnet werden.

Manager können Agentenparameter lesen (GET) und schreiben (SET). Agenten können Nachrichten (*traps*) an Manager über Änderungen an beliebigen Parametern senden. Jeder Agentenparameter verfügt über eine eindeutige Kennung (OID – object identifier), eine Folge von durch Punkte getrennten Zahlen.

4.11.2 Implementierung

Das Modul unterstützt das SNMP-Protokoll (SNMPv1- und SNMPv2c-Versionen) und kann als Agent mit GET- und SET-Anfragen verwendet werden.

Alle Modulparameter sind über das SNMP-Protokoll verfügbar. Die Liste der Parameter finden Sie in Anh. D.

HINWEIS

Wenn Sie das SNMP-Protokoll ohne GET-Anforderungen verwenden, wird es empfohlen, den Parameter "Timeout des sicheren Zustands" (Gruppe "Modbus Slave") auf 0 zu setzen, da das Schreiben in der Regel ereignisgesteuert und in diesem Fall nicht zyklisch ist.

Tabelle 4.11 SNMP-Parameter

Parameter	Beschreibung	Bereich	Standardwert	Zugriff
Aktivieren	SNMP-Verbindung aktivieren	Ein / Aus	Aus	RW
Read community	Passwort für Lesezugriff	_	public	RW
Write community	Passwort für Schreibzugriff	_	private	RW
Trap IP- Adresse	IP-Adresse, an die der Trap gesendet wird, wenn die Maske der digitalen Eingänge geändert wird (Module nur mit digitalen Eingängen)	_	10.2.4.78	RW

Parameter	Beschreibung	Bereich	Standardwert	Zugriff
Trap-Port	Portnummer, an der der Trap gesendet wird	065535	162	RW
SNMP-Version	Protokollversion	SNMPv1 / SNMPv2	SNMPv1	RW

Weitere Informationen finden Sie im Dokument: <u>NTP_MQTT_SNMP_protocols</u>.

4.12 Passwort

Sie können ein Passwort verwenden, um die Konfigurationsparameter des Geräts vor unbefugtem Zugriff zu schützen. Zum Festlegen des Passworts verwenden Sie das Symbolleistensymbol

Passwort for oder denselben Eintrag im Gerätekontextmenü. Standardmäßig ist kein Passwort eingesetzt.

Wenn Sie das Passwort vergessen haben, stellen Sie die Werkseinstellungen wieder her (Kap. 6).

5 Installation

Die Sicherheitsanforderungen aus dem Kap. 1.5 sind zu beachten.

5.1 Montage

Das Gerät kann auf einer DIN-Schiene oder mit zwei Schrauben an einer Montageplatte in einem Schaltschrank installiert werden.

Die Betriebsbedingungen aus dem Kap. 3.2 müssen bei der Auswahl des Installationsortes berücksichtigt werden.

Maßzeichnungen finden Sie im Anhang A. Nur die vertikale Positionierung des Geräts ist zulässig.

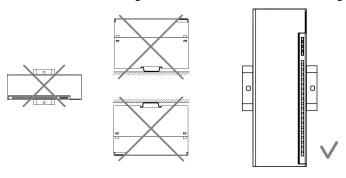


Abb. 5.1 DIN rail mounting

Geräteaustausch (Abb. 5.2):

- Schalten Sie die Stromversorgung des Moduls und aller angeschlossenen Geräte aus
- Öffnen Sie die Frontabdeckung 1
- Lösen Sie die beiden Schrauben 3
- entfernen Sie den Klemmenblock 2

Jetzt können Sie das Gerät austauschen. Gehen Sie in umgekehrter Reihenfolge vor, nachdem Sie das Gerät ausgetauscht haben.

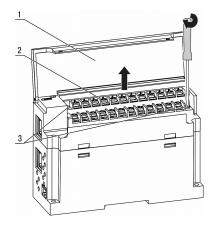


Abb. 5.2 Geräteaustausch

5.1.1 Elektrische Anschlüsse

WARNUNG

Das Gerät muss ausgeschaltet sein, bevor es an Peripheriegeräte oder an einen PC angeschlossen wird. Schalten Sie die Stromversorgung erst ein, wenn die Verdrahtung des Geräts abgeschlossen ist.

ACHTUNG

Stellen Sie sicher, dass das Eingangssignal an die richtigen Eingangsklemmen angeschlossen ist und dass die Eingangskonfiguration dem Signal entspricht. Nichtbeachtung kann das Gerät beschädigen.

HINWEIS

Um die Einhaltung der EMV-Anforderungen sicherzustellen:

- Signalkabel sollten separat verlegt oder von den Versorgungskabeln abgeschirmt werden.
- Für die Signalleitungen sollte ein abgeschirmtes Kabel verwendet werden.

5.1.2 Allgemeine Informationen

Stromversorgungsanschlüsse und Ethernet-Schnittstellen befinden sich oben am Gerät (Abb. 2.3). Der Gegenstecker für die Stromversorgung ist im Lieferumfang enthalten.

Die Klemmenanordnung ist in Abb. 5.3 und Tabelle 5.1 dargestellt.

Die elektrischen Anschlüsse für Ein- und Ausgänge sind in Abb. 5.5...5.7 dargestellt.

Der maximale Leiterquerschnitt beträgt 1,0 mm².

Der steckbare Klemmenblock für die Stromversorgung und der abnehmbare Klemmenblock für die E/A-Anschlüsse ermöglichen einen schnellen und einfachen Austausch des Geräts (siehe Abb. 5.2). Wenn die Verkabelung abgeschlossen ist, sollten die Drähte in einer speziellen Aussparung unter der Abdeckung platziert werden, damit benachbarte Geräte nahe beieinander auf der DIN-Schiene platziert werden können.

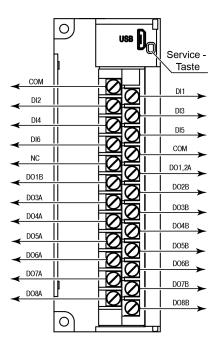


Abb. 5.3 Frontansicht (offene Abdeckung)

Tabelle 5.1 Klemmenbelegung

Bezeichnung	Beschreibung
DI1DI6	Eingangsklemmen
COM	Gemeinsame Eingangsklemmen
NC	Nicht angeschlossen
DO1,2A	Gemeinsame Klemme A der Ausgänge 1, 2
DO3ADO8A, DOBDO8B	Ausgangsklemmen

5.1.2.1 Analogeingänge

5.1.2.1.1 RTD

Für unterstützte Sensoren siehe Tab. 3.2.

Der RTD-Sensor sollte über einen Dreidrahtleitung an einen Eingang angeschlossen werden, um den Einfluss des Widerstands der Leitungsdrähte auf die Messergebnisse zu verringern.

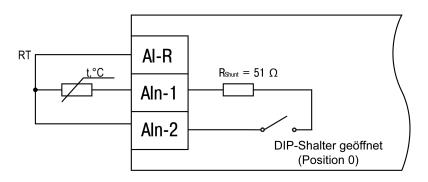


Abb. 5.4 Anschluss des Widerstandsthermometers

5.1.2.1.2 TC

Für unterstützte Sensoren siehe Tab. 3.2.

Es können nur Thermoelemente mit isolierter (nicht geerdeter) Messstelle (hot junction) verwendet werden, da die negativen Anschlüsse Aln-1 aller Eingänge das gleiche elektrische Potential haben.

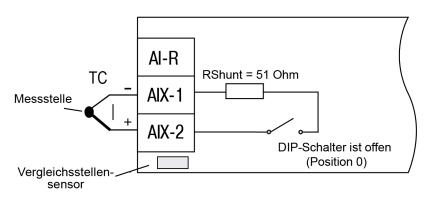


Abb. 5.5 TC-Anschluss

Zum Anschluss eines entfernten Thermoelements an den Eingang, verwenden Sie ein Thermoelementkabel (Kompensationskabel).

Informationen zur Verwendung der Vergleichsstellenkompensation (CJC) finden Sie in Abschn. 4.8.7.

5.1.2.1.3 Aktive lineare Strom- und Spannungssignale

Für unterstützte Signale siehe Tab. 3.2.

Aktive Sensoren verwenden eine externe Gleichspannungsquelle.

ACHTUNG

Die negativen Anschlüsse Aln-1 aller Eingänge haben das gleiche elektrische Potential.

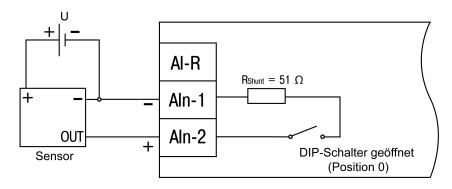


Abb. 5.6 Spannungssensor-Anschluss (3-Draht)

Bevor Sie einen Stromsensor an den ausgewählten Eingang anschließen, schalten Sie den DIP-Schalter dieses Eingangs in die Position "1" (Abb. 2.4).

Schalten Sie den DIP-Schalter in die Position "0", wenn Sie einen anderen Sensortyp verwenden. Andernfalls werden die Messwerte falsch berechnet.

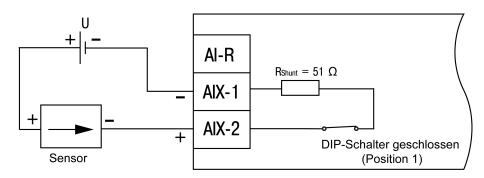


Abb. 5.7 Stromsensor-Anschluss (2-Draht)

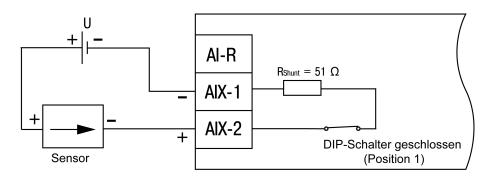


Abb. 5.8 Stromsensor-Anschluss (3-Draht)

5.1.2.1.4 Anschluss des Widerstandsgebers

Für unterstützte Signale siehe Tab. 3.2.

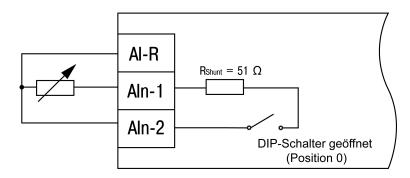


Abb. 5.9 Widerstandssensor-Anschluss (3-Draht)

5.1.2.1.5 Schaltkontakt

An jeden Analogeingang können zwei diskrete Schaltkontakt-Signale (Schalter, Tasten, Relaiskontakte usw.) angeschlossen werden.

Alle Widerstände im Bereich von 200 bis 3000 Ω können als Shunt-Widerstand verwendet werden. Beide Widerstände am Eingang müssen den gleichen Nennwert haben.

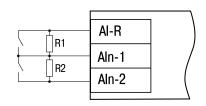


Abb. 5.10 Schaltkontakt-Anschluss

Der Zustand des Eingangs verbundenen mit zwei Schaltkontakten wird als Ganzzahl im Bereich 0... 3 dargestellt (Tab. 5.3).

Tabelle 5.2 Digitaleingangs-Zustand

Zustand	K1	K2
0	geöffnet	geöffnet
1	geöffnet	geschlossen
2	geschlossen	geöffnet
3	geschlossen	geschlossen

5.1.3 Ethernet

Die Ethernet-Verbindungen können in einer Stern- oder Daisy-Chain-Topologie hergestellt werden (Abb. <u>5.11</u>, <u>5.12</u>).

Es wird empfohlen, den nicht verwendeten Anschluss mit einem Gummistopfen (im Lieferumfang enthalten) abzudichten.

Sterntopologie:

- Die maximale Länge der Netzwerklinien zwischen Modulen beträgt 100 m.
- Beide Ethernet-Anschlüsse können verwendet werden.

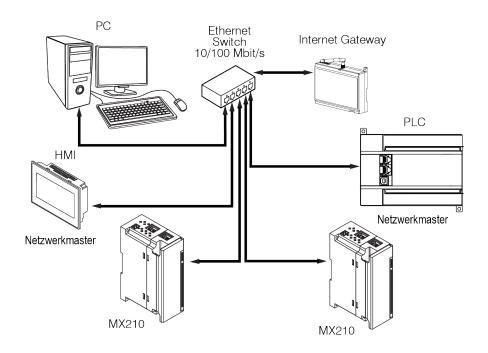


Abb. 5.11 Sterntopologie

Chain-Topologie:

- Die maximale Abschnittslänge beträgt 100 m
- realisiert mit zwei Ethernet-Anschlüssen
- Wenn das Modul ausfällt (Gerätefehler oder Stromversorgungsverlust), werden die Daten direkt von Anschluss 1 zu Anschluss 2 übertragen (Auto-Bypass).

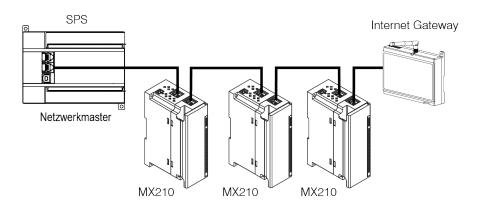


Abb. 5.12 Chain-Topologie

6 Wiederherstellen von Werkeinstellungen

VORSICHT

Nach dem Wiederherstellen der Werkseinstellungen werden alle Parameter außer Ethernet auf die Standardwerte zurückgesetzt und das Kennwort gelöscht. Die Ethernet-Parameter werden nicht beeinflusst.

Um die Werkseinstellungen wiederherstellen:

- 1. Schalten Sie das Gerät ein.
- 2. Öffnen Sie die Frontabdeckung.
- 3. Halten Sie mit einem dünnen Werkzeug die Service-Taste (Abb. 2.2. Pos. 7) mindestens 12 Sekunden lang gedrückt.
- 4. Schließen Sie die Abdeckung.

Das Gerät arbeitet jetzt mit den Standardparametern.

7 Wartung

WARNUNG

Schalten Sie die Stromversorgung vor den Wartungsarbeiten ab.

Die Wartung umfasst:

- Reinigung des Gehäuses und der Klemmleisten vom Staub, Schmutz und Fremdkörper
- Überprüfung der Gerätebefestigung
- Überprüfung der elektrischen Anschlüsse (Verbindungslinien, Anschlussklemmen, keine mechanischen Beschädigungen)

ACHTUNG

Das Gerät sollte nur mit einem feuchten Tuch gereinigt werden. Keine Scheuermittel oder lösemittelhaltige Reinigungsmittel verwenden.

8 Transport und Lagerung

Verpacken Sie das Gerät so, dass es für die Lagerung und den Transport sicher gegen Stöße geschützt wird. Die Originalverpackung bietet optimalen Schutz.

Wird das Gerät nicht unmittelbar nach der Anlieferung in Betrieb genommen, muss es sorgfältig an einer geschützten Stelle gelagert werden. Es darf kein chemisch aktiver Stoff in der Luft vorhanden sein.

Die Umgebungsbedingungen aus dem Abschn. 3.2 müssen bei Transport und Lagerung berücksichtigt werden.

HINWEIS

Das Gerät könnte beim Transport beschädigt worden sein. Überprüfen Sie das Gerät auf Transportschäden und auf Vollständigkeit!

Melden Sie festgestellte Transportschäden unverzüglich dem Spediteur und akYtec GmbH!

9 Lieferumfang

_		•
_	Ethernet-Verbindungskabel	•
_	2-poliger Steckklemmenblock	
_	Gummistopfen	
_	Kurzanleitung	

Appendix A. Abmessungen

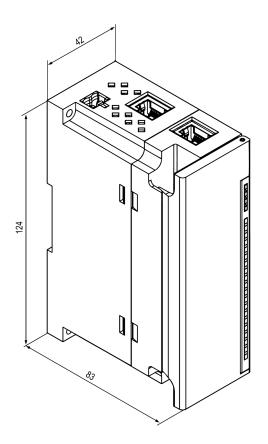


Abb. A.1 Außenmaße

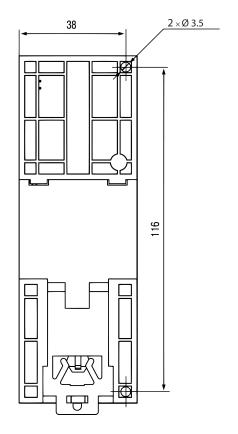


Abb. A.2 Wandmontageabmessungen

Appendix B. Galvanische Trennung

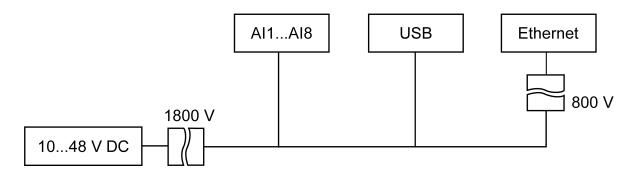


Abb. B.1 Galvanische Trennung

Die in Abb. B.1 gezeigten Prüfspannungen entsprechen den unter normalen Betriebsbedingungen durchgeführten Prüfungen mit 1 Minute Einwirkzeit.

Appendix C. Batteriewechsel

Um die Batterie auszutauschen, gehen Sie wie folgt vor:

- 1. Schalten Sie das Modul und alle angeschlossenen Geräte aus.
- 2. Entfernen Sie die Klemmenblöcke, ohne die angeschlossenen Drähte abzutrennen (Abb. 5.2).
- 3. Entfernen Sie das Modul von der DIN-Schiene.
- 4. Entfernen Sie den vorderen Teil des Gehäuses, indem Sie die vier seitlichen Verriegelungen einzeln mit einem flachen Schraubendreher öffnen (Abb. C.1).
- 5. Ersetzen Sie die Batterie.

Der Austausch sollte nicht länger als eine Minute dauern. Andernfalls muss die Echtzeituhr neu eingestellt werden.

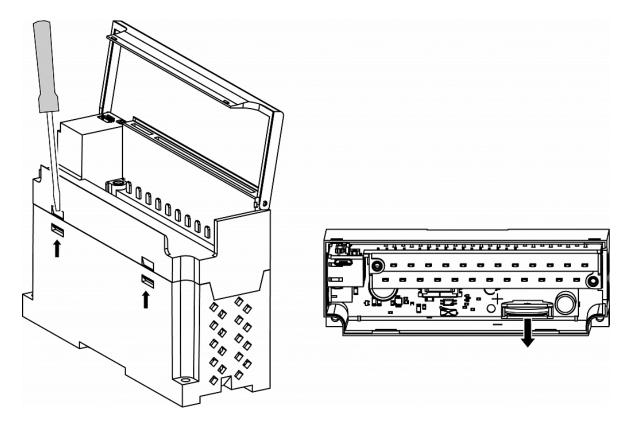


Abb. C.1 Batteriewechsel

Appendix D. Modbus-Anwendung

Tabelle D.1 – Geräte-Parameter mit Registeradressen

Tabelle D.2 – verwendete Datentypen

Tabelle D.3 – verwendete Modbus-Funktionen

Tabelle D.4 – mögliche Fehler beim Datenaustausch

Tabelle D.5 – funktionsspezifische Fehler

Wenn beim Empfang einer Anfrage ein Fehler auftritt, sendet das Modul eine Antwort mit einem Fehlercode an den Master.

Wenn die Anfrage nicht der Modbus-Spezifikation entspricht, wird sie ignoriert.

Tabelle D.1 Modbus.Register

Barrard III		Ein-	Zu-	Adre	Datamban		
Parameter	Wert	heit	griff	hex	dec	Datentyp	
Geräteinformation							
Gerätename (dev)	_	_	R	0xF000	61440	String32	
Firmware-Version (ver)	_	_	R	0xF010	61456	String32	
Plattformname	_	_	R	0xF020	61472	String32	
Plattform-Version	_	_	R	0xF030	61488	String32	
Hardware-Version	_	_	R	0xF040	61504	String32	
Zusätzliche Textinformationen	_	_	R	0xF048	61512	String32	
S/N	_	_	R	0xF084	61572	String32	
MAC-Adresse	_		R	0xF100	61696	UINT48	
	Echtz	eituhr	T	1			
Zeit	_	s	R	0xF080	61568	DATE- TIME	
Zeitzone	_	min	RW	0xF082	61570	TIMEZO- NE	
Zeit (ms)	04294967295	ms	R	0xF07B	61563	UINT32	
Neue Zeit	_	s	RW	0xF07D	61565	DATE- TIME	
New Zeit anwenden	0 – aus / 1 – ein		RW	0xF07F	61567	UINT16	
	Netzwerk	/ Ethern		1			
IP-Adresse	_	_	R	0x001A	26	UINT32	
Subnetzmaske	_	_	R	0x001C	28	UINT32	
Gateway	_	_	R	0x001E	30	UINT32	
DNS-Server 1	_	_	RW	0x000C	12	UINT32	
DNS-Server 2	_	_	RW	0x000E	14	UINT32	
Neue IP-Adresse	_	_	RW	0x0014	20	UINT32	
Neue Subnetzmaske	_	_	RW	0x0016	22	UINT32	
Neues Gateway	_	_	RW	0x0018	24	UINT32	
DHCP	0 – aus 1 – ein 2 (service button)	_	_	0x0020	26	UINT16	
	` '	erie					
Spannung	03300	mV	R	0x0321	801	UINT16	
Modbus Slave							
Timeout des sicheren Zustands	060	s	RW	0x02BC	700	UINT8	
	Gerätez	ustand					
Zustand	065535		R	0xF0B4	61620	UINT32	
	Datener	fassung					
Datenerfassungsintervall	103600	S	RW	0x0384	900	UINT16	
	Analogeingä	nge / Gr		1			
CJC	0 – aus / 1 – ein	_	RW	0x1000	4096	UINT16	

			Zu-	Adresse		D. (
Parameter Wert		Ein- heit	griff	hex	dec	Datentyp	
Maximale Abtastrate	0 – aus / 1 – ein	_	RW	0x1001	4097	UINT16	
Vergleichsstelle 1	_	_	R	0x1FC8	4040	REAL32	
Vergleichsstelle 2	_		R	0x1FCA	4042	REAL32	
				0x1FC-			
Vergleichsstelle 3	_		R	С	4044	REAL32	
	Analogeing	inge / Eir	1	1		1	
Al1 Eingangssignal	Siehe Tab. 3.2	_	RW	0x1004	4100	UINT32	
Al1 Filterbandbreit	0100	_	RW	0x1006	4102	UINT16	
Al1 Dezimalpunkt-Offset	07	—	RW	0x1007	4103	UINT16	
Al1 Kurvenoffset	-1000010000		RW	0x1008	4104	REAL32	
Al1 Kurvensteigung	-110	_	RW	0x100A	4106	REAL32	
Al1 Obere Messgrenze	-1000010000		RW	0x100C	4108	REAL32	
Al1 Untere Messgrenze	-1000010000	_	RW	0x100E	4110	REAL32	
Al1 Filterzeitkonstante	065535	S	RW	0x1010	4112	UINT16	
Al1 Abtastzeit	60010000	ms	RW	0x1011	4113	UINT16	
Al2 Eingangssignal	Siehe Tab. 3.2	_	RW	0x1014	4116	UINT32	
Al2 Filterbandbreit	0100	_	RW	0x1016	4118	UINT16	
Al2 Dezimalpunkt-Offset	07		RW	0x1017	4119	UINT16	
Al2 Kurvenoffset	-1000010000	_	RW	0x1018	4120	REAL32	
Al2 Kurvensteigung	-110	_	RW	0x101A	4122	REAL32	
Al2 Obere Messgrenze	-1000010000	_	RW	0x101C	4124	REAL32	
Al2 Untere Messgrenze	-1000010000		RW	0x101E	4126	REAL32	
Al2 Filterzeitkonstante	065535	s	RW	0x1020	4128	UINT16	
Al2 Abtastzeit	60010000	ms	RW	0x1021	4129	UINT16	
Al3 Eingangssignal	Siehe Tab. 3.2	_	RW	0x1024	4132	UINT32	
Al3 Filterbandbreit	0100		RW	0x1026	4134	UINT16	
Al3 Dezimalpunkt-Offset	07	_	RW	0x1027	4135	UINT16	
Al3 Kurvenoffset	-1000010000	_	RW	0x1027	4136	REAL32	
Al3 Kurvensteigung	-110		RW	0x1020	4138	REAL32	
Al3 Obere Messgrenze	-1000010000		RW	0x102A	4140	REAL32	
Al3 Untere Messgrenze	-1000010000	<u> </u>	RW	0x102C	4142	REAL32	
Al3 Filterzeitkonstante	065535	S	RW	0x102L 0x1030	4144	UINT16	
Al3 Abtastzeit	60010000	ms	RW	0x1030	4145	UINT16	
Al4 Eingangssignal	Siehe Tab. 3.2	1113	RW	0x1031	4148	UINT32	
Al4 Filterbandbreit	0100		RW	0x1034 0x1036	4150		
Al4 Dezimalpunkt-Offset						UINT16	
	07		RW	0x1037	4151	UINT16	
Al4 Kurvenoffset	-1000010000		RW	0x1038	4152	REAL32	
Al4 Chara Magagranga	-110	_	RW	0x103A	4154	REAL32	
Al4 Unters Massagrenze	-1000010000	_	RW	0x103C	4156	REAL32	
Al4 Untere Messgrenze	-1000010000		RW	0x103E	4158	REAL32	
Al4 Filterzeitkonstante	065535	S	RW	0x1040	4160	UINT16	
Al4 Abtastzeit	60010000	ms	RW	0x1041	4161	UINT16	
Al5 Eingangssignal	Siehe Tab. 3.2	_	RW	0x1044	4164	UINT32	
Al5 Filterbandbreit	0100	_	RW	0x1046	4166	UINT16	
Al5 Dezimalpunkt-Offset	07	_	RW	0x1047	4167	UINT16	
Al5 Kurvenoffset	-1000010000	_	RW	0x1048	4168	REAL32	
Al5 Kurvensteigung	-110	_	RW	0x104A	4170	REAL32	
Al5 Obere Messgrenze	-1000010000	_	RW	0x104C	4172	REAL32	
AI5 Untere Messgrenze	-1000010000		RW	0x104E	4174	REAL32	
Al5 Filterzeitkonstante	065535	S	RW	0x1050	4176	UINT16	
AI5 Abtastzeit	60010000	ms	RW	0x1051	4177	UINT16	

	Ein- Zu- Adresse					
Parameter	Wert	heit	griff	hex	dec	Datentyp
Al6 Eingangssignal	Siehe Tab. 3.2	_	RW	0x1054	4180	UINT32
Al6 Filterbandbreit	0100	_	RW	0x1056	4182	UINT16
Al6 Dezimalpunkt-Offset	07	<u> </u>	RW	0x1057	4183	UINT16
Al6 Kurvenoffset	-1000010000	<u> </u>	RW	0x1058	4184	REAL32
Al6 Kurvensteigung	-110	<u> </u>	RW	0x105A	4186	REAL32
Al6 Obere Messgrenze	-1000010000	_	RW	0x105C	4188	REAL32
Al6 Untere Messgrenze	-1000010000	_	RW	0x105E	4190	REAL32
Al6 Filterzeitkonstante	065535	S	RW	0x1060	4192	UINT16
Al6 Abtastzeit	60010000	ms	RW	0x1061	4193	UINT16
Al7 Eingangssignal	Siehe Tab. 3.2	_	RW	0x1064	4196	UINT32
AI7 Filterbandbreit	0100	_	RW	0x1066	4198	UINT16
AI7 Dezimalpunkt-Offset	07	_	RW	0x1067	4199	UINT16
AI7 Kurvenoffset	-1000010000	_	RW	0x1068	4200	REAL32
Al7 Kurvensteigung	-110	_	RW	0x106A	4202	REAL32
Al7 Obere Messgrenze	-1000010000	_	RW	0x106C	4204	REAL32
AI7 Untere Messgrenze	-1000010000	_	RW	0x106E	4206	REAL32
AI7 Filterzeitkonstante	065535	S	RW	0x1070	4208	UINT16
AI7 Abtastzeit	60010000	ms	RW	0x1071	4209	UINT16
Al8 Eingangssignal	Siehe Tab. 3.2	<u> </u>	RW	0x1074	4212	UINT32
Al8 Filterbandbreit	0100	_	RW	0x1076	4214	UINT16
Al8 Dezimalpunkt-Offset	07	_	RW	0x1077	4215	UINT16
Al8 Kurvenoffset	-1000010000	_	RW	0x1078	4216	REAL32
Al8 Kurvensteigung	-110	_	RW	0x107A	4218	REAL32
Al8 Obere Messgrenze	-1000010000	_	RW	0x107C	4220	REAL32
Al8 Untere Messgrenze	-1000010000	_	RW	0x107E	4222	REAL32
Al8 Filterzeitkonstante	065535	s	RW	0x1080	4224	UINT16
Al8 Abtastzeit	60010000	ms	RW	0x1081	4225	UINT16
	Analogeingän	ge / Mess	swerte			
AI1 REAL	_	_	R	0x0FA0	4000	REAL32
Al1 Zeitstempel	065535	s/100	R	0x0FA2	4002	UINT16
AI1 INT	_	_	R	0x0FE0	4064	INT16
AI2 REAL	_	_	R	0x0FA3	4003	REAL32
Al2 Zeitstempel	065535	s/100	R	0x0FA5	4005	UINT16
AI2 INT	_	_	R	0x0FE1	4065	INT16
AI3 REAL	_	_	R	0x0FA6	4006	REAL32
Al3 Zeitstempel	065535	s/100	R	0x0FA8	4008	UINT16
AI3 INT	_	_	R	0x0FE2	4066	INT16
AI4 REAL	_	_	R	0x0FA9	4009	REAL32
Al4 Zeitstempel	065535	s/100	R	0x0FAB	4010	UINT16
AI4 INT	_	_	R	0x0FE3	4067	INT16
AI5 REAL	_	_	R	0x0FAC	4012	REAL32
Al5 Zeitstempel	065535	s/100	R	0x0FAE	4014	UINT16
AI5 INT	_	_	R	0x0FE4	4068	INT16
AI6 REAL	_		R	0x0FAF	4015	REAL32
Al6 Zeitstempel	065535	s/100	R	0x0FB1	4017	UINT16
AI6 INT		_	R	0x0FE5	4069	INT16
AI7 REAL			R	0x0FB2	4018	REAL32
AI7 Zeitstempel	065535	s/100	R	0x0FB4	4020	UINT16
AI7 INT		_	R	0x0FE6	4070	INT16
AI8 REAL			R	0x0FB5	4021	REAL32
Al8 Zeitstempel	065535	s/100	R	0x0FB7	4023	UINT16

_ ,		Ein-	Zu-	Adresse		Datamban			
Parameter	Wert	heit	griff	hex	dec	Datentyp			
AI8 INT	_	_	R	0x0FE7	4071	INT16			
	NTP								
Aktivieren	0 – aus / 1 – ein	_	RW	0x1600	5632	UINT16			
NTP Server Pool	_	_	RW	0x1601	5633	String32			
NTP-Server 1	_	_	RW	0x1641	5697	UINT32			
NTP-Server 2	_	_	RW	0x1643	5699	UINT32			
Synchronisierungsperiode	565535	s	RW	0x1645	5701	UINT16			
	0 – aus								
Zustand	1 – ein	_	RW	0x1646	5702	UINT16			
	2 – synchronisiert								
	MC	TT							
Anschluss an Broker	0 – aus / 1 – ein	_	RW	0x1700	5888	UINT16			
Benutzername	_	_	RW	0x1728	5928	String32			
Passwort	_	_	RW	0x1748	5960	String32			
Gerätename	_	_	RW	0x1708	5896	String32			
Broker-Adresse	_	_	RW	0x1769	5993	String32			
Port	065535	_	RW	0x1703	5891	UINT16			
Letzte Nachricht speichern	0 – aus / 1 – ein	_	RW	0x1707	5895	UINT16			
Veröffentlichungsintervall	5600	S	RW	0x1704	5892	UINT16			
	0 – QoS0								
Servicequalität	1 – QoS1	_	RW	0x1705	5893	UINT16			
	2 – QoS2								
Keep Alive Intervall	0600	s	RW	0x1768	5992	UINT16			
	0 – aus								
	1 – ein		_						
Zustand	2-	_	R	0x1789	6025	UINT16			
	Verbindungsfeh-								
Aktivieren	ler 0 – aus / 1 – ein		RW	0x178A	6026	UINT16			
ARTIVIETET		MP	1744	OXITOA	0020	Oliviio			
Aktivieren	0 – aus / 1 – ein	_	RW	0x1400	5120	UINT16			
Read community	— — — — — — — — — — — — — — — — — — —	 	RW	0x1771	6001	String32			
Write community	_	 	RW	0x1771	6017	String32			
Trap IP-Adresse	_	 	RW	0x1401	5121	UINT32			
Trap-Port	065535	 	RW	0x1403	5123	UINT16			
·	0 – SNMPv1								
SNMP-Version	1 – SNMPv2	-	RW	0x1404	5124	UINT16			
	I CINIVII VZ			1					

Tabelle D.2 Datentypen

Datentyp	Größe (Register)	Größe (Bytes)	Beschreibung		
UINT8	1	1	Vorzeichenlose Ganzzahl		
UINT16	1	2	Vorzeichenlose Ganzzahl		
UINT32	2	4	Vorzeichenlose Ganzzahl		
UINT48	3	6	Vorzeichenlose Ganzzahl		
INT16	1	2	Ganzzahl mit Vorzeichen		
String16	8	16	Zeichenfolge mit 16 Zeichen (Win-1251 code page)		
String32	16	32	Zeichenfolge mit 32 Zeichen (Win-1251 code page)		
DATETIME	2	4	UINT32, Zeit in Sekunden ab 01/01/2000, 00:00		
TIMEZONE	1	2	INT16, Differenz zwischen UTC und Ortszeit in Minuten		

Tabelle D.3 Modbus-Funktionscodes

Code	Name	Beschreibung
03 (0x03)	Read Holding Registers	Inhalt eines zusammenhängenden Blocks von Halteregistern lesen
04 (0x04)	Read Input Registers	1 bis 125 zusammenhängende Eingangsregister lesen
06 (0x06)	Write Single Register	Ein einzelnes Halteregister schreiben
16 (0x10)	Write Multiple Registers	Einen Block zusammenhängender Register (1 bis 123) schreiben
20 (0x14)	Read File Record	Datei als Datensatz lesen
21 (0x15)	Write File Record	Datei als Datensatz schreiben

Tabelle D.4 Modbus-Fehlercodes

Code	Name	Beschreibung
01	Illegal Function	Der empfangene Funktionscode wird vom Slave nicht erkannt oder akzeptiert
02	Illegal Data Address	Die Datenadresse einiger oder aller erforderlichen Entitäten ist im Slave nicht zulässig oder nicht vorhanden
03	Illegal Data Value	Der Wert wird vom Slave nicht akzeptiert
04	Slave Device Failure	Beim Versuch des Slaves, die angeforderte Aktion auszuführen, ist ein nicht behebbarer Fehler aufgetreten

Tabelle D.5 Funktionsspezifische Fehler

Functions- code	Fehler- code	Mögliche Fehlerursachen			
03	02	Anzahl der angefragten Register größer als die maximal mögliche (125)			
03 02		Nicht vorhandener Parameter angefragt			
04	02	Anzahl der angefragten Register größer als die maximal mögliche (125)			
04	02	Nicht vorhandener Parameter angefragt			
		Ein Versuch, einen Parameter zu schreiben, der länger als 2 Bytes ist			
		Ein Versuch, einen schreibgeschützten Parameter zu schreiben			
	02	Ein Versuch, einen Parameter eines Typs zu schreiben, der von dieser Funktion nicht unterstützt wird. Unterstützte Typen:			
06	02	INT, UINT, max. 2 Bytes			
		- enumerated			
		- REAL16			
		Nicht vorhandener Parameter angefragt			
	03	Parameterwert über die gültigen Grenzwerte			
		Nicht vorhandener Parameter angefragt			
	02	Ein Versuch, einen schreibgeschützten Parameter zu schreiben			
		Anzahl der angefragten Register größer als die maximal mögliche (123)			
16		Kein Abschlusszeichen (\0) im Zeichenfolgenparameter			
	03	Die Größe der angefragten Daten ist kleiner als die Größe des ersten oder letzten Parameters in der Anfrage			
		Parameterwert über die gültigen Grenzwerte			
	01	Ungültige Datengröße (gültiger Bereich 0x070xF5)			
		Nicht angegebener Referenztyp			
	02	Fehler beim Öffnen der Datei zum Lesen (möglicherweise nicht vorhanden)			
20	03	Fehler beim Übergehen zum angegebenen Offset in der Datei			
		Fehler beim Löschen der Datei bei Löschanforderung			
	04	Zu viele Daten angefragt (mehr als 250 Byte)			
	U -1	Ungültige Datensatznummer (größer als 0x270F)			
		Ungültige Datensatzlänge (größer als 0x7A)			

Functions- code	Fehler- code	Mögliche Fehlerursachen
	01	Ungültige Datengröße (gültiger Bereich 0x090xFB)
	02	Nicht angegebener Referenztyp
21	02	Fehler beim Öffnen der Datei zum Schreiben
21	21	Nicht vorhandene Datei angefragt
	04	Schreibgeschützte Datei angefragt
		Fehler beim Schreiben der erforderlichen Anzahl von Bytes