Tank filling and draining Project for PR200-24.2

Project overview

The example describes a project to control the tank filling and emptying. The project contains 3 data processing blocks and 3 screens.

11	Level Sensors DI_filt_1 IN 00T 1.5 uf_filt(s) ub_N0_NC	Filling Dry nu Protection	preg1 Q1
I2 I3	Tank 01_r11t_2 1N 007 1.5 0t_r11t(s) 0b_00/K 0t_r11t_3 1N 007	Ievel_high 08 OverflowProtection 1 Ievel_over 1	pump2Q2
14	1.5 ut_f111(s) ub_l00_lbC 01_f11_4 1N 001 1.5 ut_f111(s) ub_l00_lbC 001	Draining Dry run Protection 1eve1_1ov 5 0 pump2	
15	IN 00T 1.5 ut_f11t(s) ub_N0_NC 1.5		- Q3

Fig. 1. Program workspace

Data processing blocks:

- Processing of level sensor signals
- Tank filling with dry run and overflow protections
- Tank draining with dry run protection

Screens:

- Filling
- Draining

Table 1. Device inputs/outputs

Name	Туре	Description			
11	BOOL	Dry run protection sensor 1			
<i>I</i> 2	BOOL	Overflow protection sensor			
I3	BOOL	Upper level sensor			
<i>I4</i>	BOOL	Lower level sensor			
15	BOOL	Dry run protection sensor 2			
Q1	BOOL	Filling pump			
Q2	BOOL	Draining pump			

Table 2. Project variables

Name	Туре	Description					
level_dry1	BOOL	Dry run protection sensor 1					
level_over	BOOL	Overflow protection sensor					
level_high	BOOL	Upper level sensor					
level_low	BOOL	Lower level sensor					
level_dry2	BOOL	Dry run protection sensor 2					

pump1	BOOL	Filling pump
pump2	BOOL	Draining pump

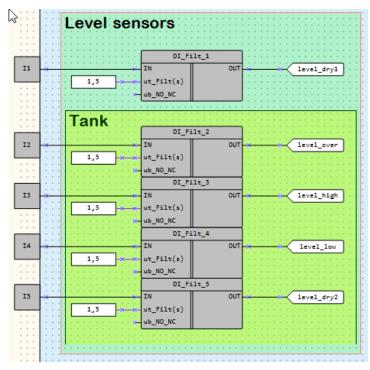


Fig. 2. Level sensors signal processing

Level sensor signals are connected to the inputs of the PR200 and further processed in the macro *DI_Filt*. The macro is a filter to avoid contact bounce. In this application, the signal must be stable for at least 1.5 s for the program to recognize it. This parameter can be changed to the required value for a particular object.

Filling

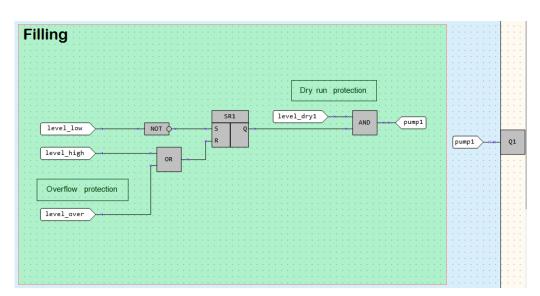


Fig. 3. Tank filling with dry run and overflow protections

After the *DI_Filt* filters, the four level signals are passed to the filling block.

- 1. If the lower level (*level_low*), upper level (*level_high*) and overflow (*level_over*) sensors are open (liquid below the level), the filling pump (*pump1*) can start (*SR1.Q* = *TRUE*).
- 2. Checking the dry run sensor (*level_dry1*):

- a. If the dry run sensor is closed (liquid above the level), the filling pump is turned on (*pump1* = TRUE) and the tank starts to fill.
- b. If the dry run sensor is open, the program waits for it to close. Until it is closed, the filling pump will never start.
- 3. When the liquid reaches the upper level (*level_high*), the pump is turned off.
- 4. If the upper level sensor (*level_high*) is not triggered, the pump will shut down when the overflow sensor (*level_over*) is closed.
- 5. The pump restarts when the lower level sensor (*level_low*) is open, i.e. the tank is empty.

Draining

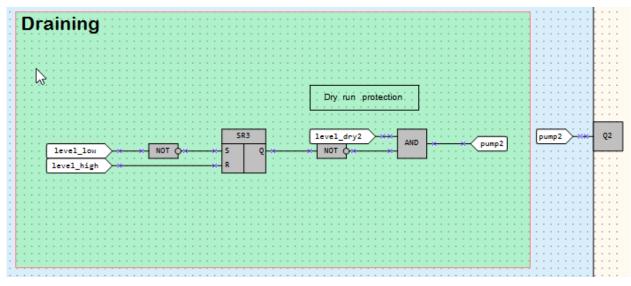


Fig. 4. Tank draining with dry run protection.

After the filters *DI_Filt*, the three level signals are passed to the draining block.

- 1. Initially the tank is full, the sensors for lower level (*level_low*), upper level (*level_high*) and dry run protection (*level_dry2*) are closed.
- 2. The pump (*pump2*) is switched on and starts draining the tank.
- 3. When the liquid reaches the lower level, the pump is switched off.
- 4. If the lower level sensor has not opened (failed), the pump will shut down when the dry run sensor is opened.
- 5. The pump will restart when the tank is full and the upper level sensor closes.

The algorithm process can be observed in ALP in simulation mode.

Screens

Table 3. Function buttons

Function buttons	Action					
\bowtie	Scroll down through screen rows					
	Scroll up through screen rows					
ALT + 😻	Switch to the next screen					
ESC	Switch to the first screen					

The status of all discrete level sensors and pumps can be observed on the screens.

Initially the first two rows of the first screen *Filling* is displayed (Fig. 5).

				F	I	L	L	I	Ν	G				
Ρ	U	Μ	Ρ	1	•							0	F	F
L	Е	V	Е	L		D	R	Y	1	:		0	F	F
L	Е	۷	Е	L		L	0	W	:			0	F	F
L	Е	V	Е	L		Н	I	G	Н	÷		0	F	F
L	Е	V	Е	L		0	V	Е	R	÷		0	F	F

Fig. 5. Screen Filling

The screen shows the status of the filling pump (*ON/OFF*) and the status of the corresponding level sensors (*ON/OFF*).

The screen *Draining* (Fig.6) shows the status of the draining pump (*ON/OFF*) and the status of the corresponding level sensors (*ON/OFF*).

	D R	AINING	
PUMP	2 :		OFF
LEVE	L	D R Y 2 :	OFF
LEVE	L	LOW:	OFF
LEVE	L	HIGH:	OFF

Fig. 6. Screen Draining